Accuracy、Recall、Error Rate 和 Precision 详解(手写笔记)

最近在复习机器学习,正好整理一下笔记,我看博客很多都参差不齐,这里我参考了很多博客,并且加上自己的思路整理了一下这几个小知识点。并附上我认为比较完整且帮助较大的博客链接。

我先简单的梳理一下(如果你懒到不想看下面笔记的话):

定义什么的我不想再提了,网上都是一大把。

记住并且区分他们最好的方式就是理解他们含义(也就是针对什么去讨论的)。

  • 精度(Accuracy)和错误率(Error rate):都是针对于模型去讨论的,是从 整体角度 出发的,因此他们的分母自然就是整体的样本集合。
  • 准确率(Precision):直接记为 查准率 比较直观。针对于 预测结果 而言的,因此它的分母是所有预测为正的样本数。
  • 召回率(Recall):直接记为 查全率 比较直观。针对于 原始样本 而言的,因此它的分母都是原始样本中为正的样本数。

另外,理解 为什么一般情况下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

见见大魔王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值