最近在复习机器学习,正好整理一下笔记,我看博客很多都参差不齐,这里我参考了很多博客,并且加上自己的思路整理了一下这几个小知识点。并附上我认为比较完整且帮助较大的博客链接。
我先简单的梳理一下(如果你懒到不想看下面笔记的话):
定义什么的我不想再提了,网上都是一大把。
记住并且区分他们最好的方式就是理解他们含义(也就是针对什么去讨论的)。
- 精度(Accuracy)和错误率(Error rate):都是针对于模型去讨论的,是从 整体角度 出发的,因此他们的分母自然就是整体的样本集合。
- 准确率(Precision):直接记为 查准率 比较直观。针对于 预测结果 而言的,因此它的分母是所有预测为正的样本数。
- 召回率(Recall):直接记为 查全率 比较直观。针对于 原始样本 而言的,因此它的分母都是原始样本中为正的样本数。
另外,理解 为什么一般情况下