【C++算法模板】快速幂

 正好在复习算法,总结一下!

快速幂的优点在于比起暴力枚举,快速幂每次计算的是平方操作,将算法的时间复杂度从 O(n²) 下降到 O(logn)


原理

 我们可以把任意一个幂运算的幂次展开乘二进制表示,从而列出一个幂次是二进制权重的乘法式子(如图中等号右边),我们只要计算这个式子,就相当于求了幂运算了。每次循环对a进行平方(a, a², a⁴...),然后根据幂次的二进制表达,我们对其进行选择要或者不要。注意的是,不管要或者不要,都需要对 a 进行平方!


 常规快速幂的模板

typedef long long LL;
LL pow_quick(LL a, LL n){
	LL res = 1;
	while(n){
		if(n & 1){
			res *= a;	//判断最后一位是不是1,如果是的话,就把 a 乘上来 
		}		
		a *= a;		//每一步都要乘a ,相当于a的平方 
		n >>= 1;		//右移一位 
	}
	return res;
}

模下快速幂的模板

typedef long long LL;
LL pow_quick(LL a, LL n, LL m){
	LL res = 1;
	while(n){
		if(n & 1){
			res = res * a % m;
		}		
		a = a * a % m;		
		n >>= 1;		 
	}
	return res;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

见见大魔王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值