正好在复习算法,总结一下!
快速幂的优点在于比起暴力枚举,快速幂每次计算的是平方操作,将算法的时间复杂度从 O(n²) 下降到 O(logn)。
原理
我们可以把任意一个幂运算的幂次展开乘二进制表示,从而列出一个幂次是二进制权重的乘法式子(如图中等号右边),我们只要计算这个式子,就相当于求了幂运算了。每次循环对a进行平方(a, a², a⁴...),然后根据幂次的二进制表达,我们对其进行选择要或者不要。注意的是,不管要或者不要,都需要对 a 进行平方!
常规快速幂的模板
typedef long long LL;
LL pow_quick(LL a, LL n){
LL res = 1;
while(n){
if(n & 1){
res *= a; //判断最后一位是不是1,如果是的话,就把 a 乘上来
}
a *= a; //每一步都要乘a ,相当于a的平方
n >>= 1; //右移一位
}
return res;
}
模下快速幂的模板
typedef long long LL;
LL pow_quick(LL a, LL n, LL m){
LL res = 1;
while(n){
if(n & 1){
res = res * a % m;
}
a = a * a % m;
n >>= 1;
}
return res;
}