AI自瞄原理剖析(三)关于AI自瞄常用的Yolo推理框架与加速技术

在这里插入图片描述

Yolo框架推理阶段:国内AI自瞄常用的Yolo推理框架与加速技术

在AI自瞄系统中,目标检测是最核心的技术之一。近年来,随着深度学习和计算机视觉技术的不断发展,Yolo框架因其高效的推理速度和较高的精度,成为了国内AI自瞄领域的主流技术。本文将探讨目前国内AI自瞄常用的Yolo推理框架,包括Yolov4-tiny、Yolov5-6.1/6.2版本、Yolo-X、Yolov8、Yolov9等,并详细介绍如何基于CUDA加速和TensorRT量化加速部署Yolov5推理框架,以及如何使用AMD显卡通过Direct-ML加速。

1. 国内AI自瞄常用的Yolo推理框架

目前,国内AI自瞄系统中常用的Yolo推理框架主要包括以下几种:

1.1 Yolov4-tiny

Yolov4-tiny是Yolov4的轻量级版本,适用于对推理速度有较高要求但对精度要求不如标准Yolov4那样严格的场景。它通过减少网络结构中的层数和参数量来提高速度,但同时也牺牲了一些精度。对于嵌入式设备和边缘计算平台,Yolov4-tiny仍然是一个不错的选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码简单说

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值