Yolo框架推理阶段:国内AI自瞄常用的Yolo推理框架与加速技术
在AI自瞄系统中,目标检测是最核心的技术之一。近年来,随着深度学习和计算机视觉技术的不断发展,Yolo框架因其高效的推理速度和较高的精度,成为了国内AI自瞄领域的主流技术。本文将探讨目前国内AI自瞄常用的Yolo推理框架,包括Yolov4-tiny、Yolov5-6.1/6.2版本、Yolo-X、Yolov8、Yolov9等,并详细介绍如何基于CUDA加速和TensorRT量化加速部署Yolov5推理框架,以及如何使用AMD显卡通过Direct-ML加速。
1. 国内AI自瞄常用的Yolo推理框架
目前,国内AI自瞄系统中常用的Yolo推理框架主要包括以下几种:
1.1 Yolov4-tiny
Yolov4-tiny是Yolov4的轻量级版本,适用于对推理速度有较高要求但对精度要求不如标准Yolov4那样严格的场景。它通过减少网络结构中的层数和参数量来提高速度,但同时也牺牲了一些精度。对于嵌入式设备和边缘计算平台,Yolov4-tiny仍然是一个不错的选择。