吞一块大饼,还不如切成小块吃得香
常见的数据集,要么是数列,要么是表格;
因此,数据分析最首要的是,处理一维、二维数据。
主要知识点可参考如图。
如需要,可点击链接百度网盘(提取码 eyel)查看数据分析基础知识图PDF:MindMap_数据分析基础
数据分析常用第三方包
- Numpy
- Pandas
#导入numpy包
import numpy as np
#导入pandas包
import pandas as pd
文章目录
1. 一维数据
- Numpy(Numerical Python): Array
- Pandas: Series
- Array => Series
1.1 Numpy-Array
#定义:一维数组array
#参数:一个列表[2,3,4,5]
a = np.array([2,3,4,5])
#查询
a[0]
2
#切片访问:获取指定序号范围的元素
#a[1:3]获取到的是序号从1到3的元素
a[1:3]
array([3, 4])
#切片访问:反序
a[::-1]
array([5, 4, 3, 2])
#循环访问
for i in range(len(a)):
print(a[i])
2
3
4
5
#循环访问
for i in a: # 获取a数组里面的数据,从i=2开始
print(a[i-2])
2
3
4
5
#循环访问
for i in a:
print(i)
2
3
4
5
#查看数据类型
a.dtype
dtype('int32')
#统计计算:平均值
a.mean()
3.5
#统计计算:标准差
a.std()
1.118033988749895
#向量化计算:向量相加
b=np.array([1,2,3])
c=np.array([4,