2_如何处理一维、二维数据

本文介绍了如何处理一维和二维数据,重点讲解了Numpy的Array和Pandas的Series及DataFrame。一维数据中,对比了Numpy数组与Python列表的区别,强调了Numpy在存储和运算效率上的优势。二维数据部分,阐述了Pandas DataFrame在处理表格数据方面的便利。同时,提到了查询操作,包括查询列和条件筛选。
摘要由CSDN通过智能技术生成

在这里插入图片描述

吞一块大饼,还不如切成小块吃得香

常见的数据集,要么是数列,要么是表格;

因此,数据分析最首要的是,处理一维、二维数据。

主要知识点可参考如图。
在这里插入图片描述
如需要,可点击链接百度网盘(提取码 eyel)查看数据分析基础知识图PDF:MindMap_数据分析基础


数据分析常用第三方包

  • Numpy
  • Pandas
#导入numpy包
import numpy as np
#导入pandas包
import pandas as pd

1. 一维数据

  • Numpy(Numerical Python): Array
  • Pandas: Series
  • Array => Series
1.1 Numpy-Array
#定义:一维数组array
#参数:一个列表[2,3,4,5]
a = np.array([2,3,4,5])
#查询
a[0]
2
#切片访问:获取指定序号范围的元素
#a[1:3]获取到的是序号从1到3的元素
a[1:3]
array([3, 4])
#切片访问:反序
a[::-1]
array([5, 4, 3, 2])
#循环访问
for i in range(len(a)):
    print(a[i])
2
3
4
5
#循环访问
for i in a:  # 获取a数组里面的数据,从i=2开始
    print(a[i-2])
2
3
4
5
#循环访问
for i in a:
    print(i)
2
3
4
5
#查看数据类型
a.dtype
dtype('int32')
#统计计算:平均值
a.mean()
3.5
#统计计算:标准差
a.std()
1.118033988749895
#向量化计算:向量相加
b=np.array([1,2,3])
c=np.array([4,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值