剑指offer 16到20题 ( JAVA )

第十六题:

输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则。

思路:各自遍历,谁小先连接谁,最后把剩下的一起连接上去

代码:

/*
public class ListNode {
    int val;
    ListNode next = null;

    ListNode(int val) {
        this.val = val;
    }
}*/
public class Solution {
    public ListNode Merge(ListNode list1,ListNode list2) {
        ListNode resultList=new ListNode(0);//新建一个头结点
        ListNode tempHead=resultList;
        while(list1!=null&&list2!=null)//直到有一个链表先为空
        {
            if(list1.val<list2.val)//谁小,那么tempHead的下一个结点就是它
            {
                tempHead.next=list1;
                list1=list1.next;//list1向后移
            }
            else{
                   tempHead.next=list2;
                list2=list2.next;//list2向后移
            }
            tempHead=tempHead.next;//遍历的tempHead指向下一个
        }
        if(list1==null)//如果链表1为空,那么链表2可能不为空
        {
            tempHead.next=list2;//所以把链表2接到后面
        }else{//否则说明链表2为空,就把链表1接到后面
            tempHead.next=list1;
        }
        return resultList.next;//返回头结点的下一个,即相应的链表
    }
}

 

---------------------------------------------------------------可爱的分界线----------------------------------------------------------------------------------------

第十七题:

输入两棵二叉树A,B,判断B是不是A的子结构。(ps:我们约定空树不是任意一个树的子结构)

思维:两个递归,先判断根是否相同(一个递归),如果相同,再判断左右儿子是否相同(一个递归),用标记帮忙实现。

代码:

/**
public class TreeNode {
    int val = 0;
    TreeNode left = null;
    TreeNode right = null;

    public TreeNode(int val) {
        this.val = val;

    }

}
*/
public class Solution {
   public boolean HasSubtree(TreeNode root1,TreeNode root2) {
       if(root2 == null)//当Tree1和Tree2都不为零的时候,才进行比较。否则直接返回false
           return false;
       if(root1 == null)
           return false;
       boolean flag = false;
       if(root1.val == root2.val)//以这个根节点为为起点判断是否包含Tree2
       {
           flag = doHasSubtree(root1,root2);//如果根结点包含,则进入判断函数
       }
       if(flag)
           return flag;//flag为true直接返回
       if(!flag)
       {//如果找不到,那么就再去root的左儿子当作起点,去判断时候包含Tree2
           flag = HasSubtree(root1.left,root2);//递归判断根是否包含
           if(flag)
               return true;
           else{//如果还找不到,那么就再去root的右儿子当作起点,去判断时候包含Tree2
               flag = HasSubtree(root1.right,root2);//递归判断根是否包含
               if(flag)
                   return true;
           }
       }
       return false;
   }
   private boolean doHasSubtree(TreeNode root1,TreeNode root2)
   {
       if(root2 == null)//如果Tree2已经遍历完了都能对应的上,返回true
           return true;
       if(root1 == null)//如果Tree2还没有遍历完,Tree1却遍历完了。返回false
           return false;
       if(root1.val != root2.val)//如果其中有一个点没有对应上,返回false
           return false;
       //如果根节点对应的上,那么就分别去子节点里面匹配(递归)
       return doHasSubtree(root1.left,root2.left) && doHasSubtree(root1.right,root2.right);
   }
}


---------------------------------------------------------------可爱的分界线----------------------------------------------------------------------------------------

第十八题:

操作给定的二叉树,将其变换为源二叉树的镜像。

输入描述:

二叉树的镜像定义:源二叉树 
    	    8
    	   /  \
    	  6   10
    	 / \  / \
    	5  7 9 11
    	镜像二叉树
    	    8
    	   /  \
    	  10   6
    	 / \  / \
    	11 9 7  5

思路:对左右儿子进行交换,之后左右儿子进入递归。

代码:

/**
public class TreeNode {
    int val = 0;
    TreeNode left = null;
    TreeNode right = null;

    public TreeNode(int val) {
        this.val = val;

    }

}
*/
public class Solution {
    public void Mirror(TreeNode root) {
        if(root == null )
           return;
       if(root.left == null && root.right == null)
           return;
       TreeNode tempNode = root.right;
       root.right = root.left;
       root.left = tempNode; //这里三行代码进行 交换左右子树
       Mirror(root.left);//对于左子树 递归调用  就是说对于左子树也进行交换
       Mirror(root.right);//右子树同理
    }
}

---------------------------------------------------------------可爱的分界线----------------------------------------------------------------------------------------

第十九题:

输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10.

思路:

  • 按照顺时针打印矩阵,这里的话我用了一个变量count,来记录遍历的数目,当count如果小于等于二维矩阵的数目的话,说明没有遍历完成,直到count达到二维数组的数目。

  • 代码中的left,right,bottom,top解读。left代表最左的一层,top代表最顶的一层,bottom代表最低的一层,right代表最右的一层,举个例子,比如最顶的层top,每当遍历完最上面的一层,那么就top++,比如最底层bottom每当遍历完最低一层就bottom--,这样下去肯定会出现top和bottom相遇的情况,也就是全部都遍历完了

代码:

import java.util.ArrayList;
public class Solution {
   public ArrayList<Integer> printMatrix(int [][] matrix) {
       ArrayList<Integer> resultList = new ArrayList<>();
       int cols = matrix[0].length;//列
       int rows = matrix.length;//行
       int left=0,top=0,bottom=rows-1,right=cols-1;
       //left代表最左的一层,top代表最上的一层,bottom代表最低的一层,right代表最右的一层
       int count = 0;//计数,count如果达到数组的全部个数,那么结束。
       while(count < cols*rows)
       {
           for(int i=left;i<=right;i++)//从左往右进行遍历,第一层
           {//left是目前最左边的那个边界,right是目前最右边的边界
               resultList.add(matrix[top][i]);
               count++;//每加入一个元素,计数+1
               if(count >= cols*rows)
                   return resultList;//一旦count=cols*rows应该立即返回,不再执行之后的语言
           }
           top++;//遍历完目前的最顶层,那么top就到下一层
           for(int i=top;i<=bottom;i++)
           {//从上往下进行遍历,top是目前最上的边界,bottom是目前最下的边界
               resultList.add(matrix[i][right]);
               count++;//每加入一个元素,计数+1
               if(count >= cols*rows)
                   return resultList;
           }
           right--;//遍历完最右边的边界,那么right就减一,到下一个最右边边界
           for(int i=right;i>=left;i--)
           {//从右到左,和上面同理
               resultList.add(matrix[bottom][i]);
               count++;//每加入一个元素,计数+1
               if(count >= cols*rows)
                   return resultList;
           }
           bottom--;
           for(int i=bottom;i>=top;i--)
           {//从下到上,和上面同理。
               resultList.add(matrix[i][left]);
               count++;//每加入一个元素,计数+1
               if(count >= cols*rows)
                   return resultList;
           }
           left++;
       }
       return resultList;
   }
}

---------------------------------------------------------------可爱的分界线----------------------------------------------------------------------------------------

第二十题:

定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1))。

思路:利用辅助栈实现,且每次入栈都要与辅助栈的栈顶进行比较,保证辅助栈从上到下为升序,且每次出栈一个元素,辅助栈也要出栈栈顶。

代码:


import java.util.Stack;

public class Solution {

    Stack<Integer> stack1 = new Stack<>();
    Stack<Integer> stack2 = new Stack<>();

    public void push(int node) {
        stack1.push(node);
        if (stack2.empty()) {
            stack2.push(node);
        } else {
            if (node <= (int) stack2.peek())//比较栈顶与入栈的值,哪个小入哪个
            {
                stack2.push(node);
            } else {
                stack2.push(stack2.peek());
            }
        }
    }

    public void pop() {
        stack2.pop();
        stack1.pop();
    }

    public int top() {
        return (int) stack1.peek();
    }

    public int min() {
        return (int) stack2.peek();
    }
}

---------------------------------------------------------------可爱的分界线----------------------------------------------------------------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值