数据结构——时间复杂度分析

《数据结构》笔记

1. 关于递归法时间复杂度计算的主方法:

对于 T ( n ) T(n) T(n) T ( n ) = a T ( n / b ) + f ( n ) , 其 中 a ≥ 1 , b > 1 , f 为 渐 进 趋 正 T(n) = aT(n/b)+f(n),其中a≥1,b>1,f为渐进趋正 T(n)=aT(n/b)+f(n),a1,b>1,f
Caes1: f ( n ) = O ( n l o g b a − ε ) f(n)=O(n^{log^a_b-ε}) f(n)=O(nlogbaε) ε > 0 ε>0 ε>0时,则其复杂度为 T ( n ) = Θ ( n l o g b a ) T(n)=Θ(n^{log^a_b}) T(n)=Θ(nlogba)
Caes2: f ( n ) = O ( n l o g b a l o g k n ) f(n)=O(n^{log^a_b}log^kn) f(n)=O(nlogbalogkn) k ≥ 0 k≥0 k0时,则其复杂度为 T ( n ) = Θ ( n l o g b a l o g k + 1 n ) T(n)=Θ(n^{log^a_b}log^{k+1}n) T(n)=Θ(nlogbalogk+1n)
Caes2: f ( n ) = O ( n l o g b a − ε ) f(n)=O(n^{log^a_b-ε}) f(n)=O(nlogbaε) ε > 0 ε>0 ε>0且对于 c < 1 c<1 c<1 a f ( n / b ) ≤ c f ( n ) af(n/b)≤cf(n) af(n/b)cf(n),则其复杂度为 T ( n ) = Θ ( f ( n ) ) T(n)=Θ(f(n)) T(n)=Θ(f(n))

其证明过程见《算法导论》B站bv号:BV1Tb411M7FA
Examples:分治法中使用递归过程的归并排序(Merge Sort)

对于n个未排序的数组 A A A,即 A [ 1 , ⋅ ⋅ ⋅ , n ] A[1,···,n] A[1,,n](此处 1 − n 1-n 1n表示数组元素位置)其排序过程如下:

  1. If n = 1 n=1 n=1,done.
  2. else 将数组 A A A分为两份 A [ 1 , ⋅ ⋅ ⋅ , n / 2 ] A[1,···,n/2] A[1,,n/2],分别对两个 A [ 1 , ⋅ ⋅ ⋅ , n / 2 ] A[1,···,n/2] A[1,,n/2]进行归并,
  3. 合并两个 A [ 1 , ⋅ ⋅ ⋅ , n / 2 ] A[1,···,n/2] A[1,,n/2]数组。

对于第2个步骤会递归地进行步骤1,2,3。
由此可知按照步骤1,2,3的时间复杂度 T ( n ) = Θ ( 1 ) + 2 T ( n / 2 ) + Θ ( n ) T(n)=Θ(1)+2T(n/2)+Θ(n) T(n)=Θ(1)+2T(n/2)+Θ(n),对应主方法,则 f ( n ) = Θ ( 1 ) + Θ ( n ) f(n)=Θ(1)+Θ(n) f(n)=Θ(1)+Θ(n),此处 n l o g b a = n l o g 2 2 = n n^{log^a_b}=n^{log^2_2}=n nlogba=nlog22=n,若其对应Case1,不满足 ε > 0 ε>0 ε>0,若其对应Case2, k k k 0 0 0,满足 k ≥ 0 k≥0 k0
则有归并排序的时间复杂度为: T ( n ) = Θ ( n l o g b a l o g k + 1 n ) = Θ ( n l o g n ) T(n)=Θ(n^{log^a_b}log^{k+1}n)=Θ(nlogn) T(n)=Θ(nlogbalogk+1n)=Θ(nlogn)

也可画二叉树进行粗略证明(此处借用《算法导论》配套PPT):

T ( n ) = 2 T ( n / 2 ) + c n T(n)=2T(n/2)+cn T(n)=2T(n/2)+cn可用下图表示,其中cn即表示f(n)
在这里插入图片描述
每个 T ( n / 2 ) T(n/2) T(n/2)同样进行分隔,以此类推则有如下所示:
在这里插入图片描述
由此,将最终的叶节点与递归次数相乘则有 T ( n ) T(n) T(n)的时间复杂度: T ( n ) = Θ ( n l o g n ) T(n)=Θ(nlogn) T(n)=Θ(nlogn)

2. 复杂度分析的部分技巧
  • 若两段算法分别有复杂度 T 1 ( n ) = O ( f 1 ( n ) ) T_1(n)=O(f_1(n)) T1(n)=O(f1(n)) T 2 ( n ) = O ( f 2 ( n ) ) T_2(n)=O(f_2(n)) T2(n)=O(f2(n)),则有:
    • T 1 ( n ) + T 2 ( n ) = m a x ( O ( f 1 ( n ) ) , O ( f 2 ( n ) ) ) T_1(n)+T_2(n)=max(O(f_1(n)),O(f_2(n))) T1(n)+T2(n)=max(O(f1(n)),O(f2(n)))
    • T 1 ( n ) × T 2 ( n ) = O ( f 1 ( n ) × f 1 ( n ) ) T_1(n)×T_2(n)=O(f_1(n)×f_1(n)) T1(n)×T2(n)=O(f1(n)×f1(n))
  • T ( n ) T(n) T(n)是关于 n n n k k k阶多项式,则 T ( n ) = Θ ( n k ) T(n)=Θ(n^k) T(n)=Θ(nk)
  • 一个for循环的时间复杂度等于循环次数乘以循环体代码的复杂度
  • if-else结构的复杂度取决于if的条件判断复杂度和两个分支部分的复杂度,总体复杂度取三者中最大
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值