PAT 乙级 1003 我要通过!
一、题目描述
“答案正确”是自动判题系统给出的最令人欢喜的回复。本题属于 PAT 的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”。
得到“答案正确”的条件是:
字符串中必须仅有 P、 A、 T这三种字符,不可以包含其它字符;
任意形如 xPATx 的字符串都可以获得“答案正确”,其中 x 或者是空字符串,或者是仅由字母 A 组成的字符串;
如果 aPbTc 是正确的,那么 aPbATca 也是正确的,其中 a、 b、 c 均或者是空字符串,或者是仅由字母 A 组成的字符串。
输入格式:
每个测试输入包含 1 个测试用例。第 1 行给出一个正整数 n (≤10),是需要检测的字符串个数。接下来每个字符串占一行,字符串长度不超过 100,且不包含空格。
输出格式:
每个字符串的检测结果占一行,如果该字符串可以获得“答案正确”,则输出 YES,否则输出 NO。
输入样例 | 输出结果 |
---|---|
PAT | YES |
PAAT | YES |
AAPATAA | YES |
AAPAATAAAA | YES |
xPATx | NO |
PT | NO |
Whatever | NO |
APAAATAA | NO |
APT | NO |
APATTAA | NO |
二、解题思路
首先,分析得到“答案正确”的条件。
1、仅包含P、A、T这三种字符。2、在xPATx形式下,前后可有任意数量的A。3、若aPbTc正确,则aPbATca也正确。
其次,由条件1和2可以得出,对于PAT、APATA、AAPATAA这样的例子可得到“答案正确”。
根据条件2和条件3,有PAT一定是正确的,即a=空,b=A,c=空,则推理aPbATca为PAAT也是正确的。继续递推可得,a=空,b=AA,c=空,则推理aPbATca为PAAAT也是正确。依次递推可得,PAAAAA…T都是正确的。
有条件2可知,APATA是正确的,即a=A,b=A,c=A,则推理aPbATca为APAATAA也是正确的。继续递推可得,a=A,b=AA,c=AA,则推理aPbATca为APAAATAAA也是正确的。
AAPATAA是正确的,即a=AA,b=A,c=AA,则推理aPbATca为AAPAATAAAA也是正确的。继续递推可得,a=AA,b=AA,c=AAAA,则推理aPbATca为AAPAAATAAAAAA也是正确的。
根据以上两个例子可以推理出,答案正确的字符串需满足条件:P左边A的数量 ✖️P和T之间A的数量 = T后面A的数量。
代码思路:
首先利用正则表达式匹配符合形式要求的字符串,匹配模式为 regex r(“[A]{0,}[P][A]+[T][A]{0,}”);
然后找到P和T的位置,计算A的数量是否满足条件。
三、AC代码
//PAT 1003 我要通过
#include<iostream>
#include<string>
#include<regex>
using namespace std;
bool isTure(string s){
int l1;
int l2;
int l3 = s.length();
regex r("[A]{0,}[P][A]+[T][A]{0,}");
bool flag = regex_match(s,r);
if (flag) {
l1 = s.find('P');
l2 = s.find('T');
if (l1 * (l2- l1 -1) == (l3 - l2 - 1)){
flag = 1;
}
else {
flag = 0;
}
}
return flag;
}
int main (){
int n;
cin >> n;
string result[n];
for (int i = 0;i<n;i++){
string s;
cin >> s;
if (isTure(s)){
result[i] = "YES";
}
else {
result[i] = "NO";
}
}
for (int i = 0;i<n;i++){
cout << result[i] << endl;
}
return 0;
}