Memo: 一些细碎知识的随笔记录

这篇用于记录一些学习中遇到的细碎知识。大多不是主要领域的知识,所以并未系统地学习和整理,权当备忘和随笔啦。

Quaternion & Rotations

  • 二维中绕任意点旋转需要三维矩阵(平移 × \times × 旋转 × \times × 平移):Read
  • 三维中绕任意轴旋转需要四维矩阵(四元数表示法):Read

Python 2 vs 3

(For using Mininet…) Essential coding differences that may sometimes disturb me:

  • print a - print(a)
  • Integer / division → \rightarrow integer - → \rightarrow float
  • xrange() iterating - range()

Julia

Notes about Julia during the 6.S083 course at MIT:

  • Dynamic + Compiled (high-performance)
    • Good for data science tasks
    • But lacks robustness in some cases 😭, e.g.
      • Lack of index out-of-bound checks
      • Need to follow performance tips, o.w. can perform really bad
  • Greek (Unicode) symbols allowed, looks like math 😉
  • Some functional programming properties
    • No OOP, functions live outside
    • Multi-dispatch: function is a name and methods are its different variants of signatures
    • Mutation guard by !
  • Array{} enables 1/multi-dimensional storage
    • Vector{} is a 1d array
      • Index starts from 1 😭
      • Matlab-flavor . operators
    • Matrices can be represented as a multi-d array

Julia looks like a strange hybrid of Python + Matlab + Lisp to me. But its spirit is great, and it is developing really fast. I like it.

Statistics

  • 中心极限定理:对一个总体,做无穷次同样大小样本的抽样,这些样本的均值会呈现一种正态分布
    • 该正态分布的均值即总体的均值(i.e., 样本均值是对总体均值的无偏估计)
    • 该正态分布的标准差即标准误(Standard Error,SE),代表了我随意抽一次样本,这个样本的均值大概会离总体均值有多远的误差
  • 标准误 SE = σ n \frac{\sigma}{\sqrt{n}} n σ σ \sigma σ 为总体标准差, n n n 为样本容量
    • 但总体标准差不可知,故使用所抽样本的标准差 s s s 代替,则标准误 SE ≈ s n \approx \frac{s}{\sqrt{n}} n s
    • 总体遵循对称的分布时,样本标准差 s s s 更接近总体标准差 σ \sigma σ(总体若是遵循 skew 的分布,如指数分布,则这个近似会不太精确);同时,所抽样本容量越大,近似更精确;故当我们对总体遵循的分布有一个事先的认识的情况下,若知道总体是 skew 的(如遵循指数规律),则应选取较大的样本大小,从而使 “使用所抽样本的标准差 s s s 代替总体标准差 σ \sigma σ” 这一行为更为精确
  • 95% 置信区间 即抽出的样本的均值 ± \pm ± 1.96 SE,代表了我有 95% 的信心保证下次抽样的均值应该在这个区间内

将一切未知都交给 random 是一种聪明但有些懒惰的做法 (?)。

Dual Number & Differentiation

二元数Dual Number): a + b ϵ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值