nn.functional
文章平均质量分 78
harry_tea
这个作者很懒,什么都没留下…
展开
-
nn.functional.fold/unfold
的窗在图上滑动,步长为2,第一次覆盖的内容为1256,第二次为3478,以此类推,每次滑窗的结果用一个列向量表示,列数就是滑窗提取的次数。作用:fold和unfold的作用恰好相反,unfold是用一个滑窗来提取图像中的像素值,类似于卷积操作,但是只提取不计算,fold恰好相反将滑窗提取的值返回为一个图像。之后的过程以此类推,直到我们提取到11,这时我们的行向量提取完了,但是列向量没有,所以我们从第二列开始重复刚才的过程即可,可以看到最终我们输出向量大小为。,步长为1,所以第一次提取的结果如下。原创 2023-01-12 12:31:01 · 857 阅读 · 0 评论 -
nn.functional.sigmoid
Sigmoid的函数图像如下所示。下面对函数的参数进行解释。使用方法很简单,如下。原创 2022-09-14 22:56:56 · 719 阅读 · 0 评论 -
nn.functional.interpolate
看到双线性bilinear插值的结果和nearest结果不同,这里还报了错,大体意思是说在双线性插值的情况下,如果设置。上面例子,默认的插值为nearest插值,接下来我们看一个bilinear插值的例子。,也就是默认设置,1,2,3,4最后会到四个角落,还是比较规则的比例,但是如果设置。,输出可能取决于输入大小,并且不会按照比例将输出和输入像素进行对齐,因此默认的将。,1,2,3,4不会按照比例,位置会发生变化变得不规则,,此参数主要解释为原来的输入是否会被插值元素环绕。外,原来size为2,这里将。原创 2022-09-14 22:55:04 · 3328 阅读 · 0 评论 -
nn.functional.normalize
的,输入矩阵是(3,4),计算第1维就是4那一维(dim=0代表3那一维)。如下图所示,dim=1代表4那一维度,就是红色的那四个元素计算归一化,蓝色同理。也就是3那一维,所以对3个数进行归一化,这里以0.0107为例。下面举两个例子,一个二维一个三维。作用: 在指定的维度计算。范数,默认的计算是2范数。下面对函数的参数进行解释。原创 2022-09-14 22:53:16 · 2194 阅读 · 0 评论