python之最大公约数

1.贴题

题目来自PythonTip
最大公约数


给你两个正整数a和b, 输出它们的最大公约数。

例如:a = 3, b = 5

则输出:1


2.说明

两个思路
1. 按部就班一个个验证是否可以同时被两数整除
2. 利用数学上已经证明的方法“辗转相除法”(跳转百度百科)

3.参考代码

按部就班法

for i in range(min(a,b), 0, -1): #从两数中小的一个开始到1,一个个验证
    if a % i == 0 and b % i ==0: #如果能够被两数同时整除
        print(i) #输出该数后不再循环
        break

辗转相除法

if a<b: #如果a<b,则交换两数位置,否则不交换
    a,b = b,a
r = a % b #求a/b的余数
while r != 0: #在余数不为零时,始终进行交换和相除
    a,b = b,r
    r = a % b
print(b) #余数为零后,打印输出b

4.改进

看了人家的代码,发现辗转相除法还有更简洁的写法

非递归法

while b:
    a,b=b,a%b
print(a)

递归法

def gcd(x , y):
    if y == 0:
        print(x)
    else:
        gcd(y, x%y)

gcd(a,b)

以及一行代码

print(max([x for x in range(1,a+1) if a%x==0 and b%x==0]))
print([x for x in range(1,a+1) if a % x ==0 and b % x ==0][-1])
### Python 实现蓝桥杯竞赛中最大公约数的方法 在编程竞赛尤其是像蓝桥杯这样的赛事里,计算两个整数的最大公约数(GCD, Greatest Common Divisor)是一个常见的需。通常情况下,采用欧几里得算法来解决这个问题是最有效的方式之一。 #### 使用欧几里得算法最大公约数 欧几里得算法基于这样一个事实:两个正整数a和b(a>b),它们的最大公约数等于较小数b以及两数之差(a-b)之间的最大公约数;更进一步地讲,也等价于较大数除以较小数所得余数r与较小数之间最大公约数的过程。当其中一个数值降为零时,则另一个非零值即为所最大公约数[^1]。 下面给出一段简单的Python代码用于实现上述逻辑: ```python def gcd(a, b): while b != 0: a, b = b, a % b return abs(a) # 测试案例 print(gcd(48, 18)) # 输出应为6 ``` 这段程序通过循环迭代不断更新`a`和`b`直到满足终止条件为止,在此过程中始终保持着原初输入参数间的比例关系不变,从而确保最终得到的结果就是原始给定整数的最大公约数。 为了适应不同场景下的应用需,还可以考虑将该函数封装成更加通用的形式,比如支持多个整数作为输入并依次计算相邻两者间最大公约数直至只剩下一个结果为止。此外,考虑到实际比赛中可能会遇到非常大的数据范围,建议预先设定好合理的边界检查机制防止溢出等问题发生。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值