- 博客(6)
- 收藏
- 关注
原创 零基础入门CV赛事-街景字符识别-Task02-数据读取与数据扩增
1图像的读取 pillow from PIL import Image im =Image.open(image_path) im_gray = Image.open(image_path).convert(“L” 1.2 opencv from PIL import Image im =Image.open(image_path) im_gray = Image.open(image_path).convert(“L” 2数据扩增 2.1意义 数据扩增可以增加训练集的样本,同时也可以有效缓解模型过拟合的情
2020-05-23 21:09:35 148
原创 cv学习的第一次打卡
cv学习的第一次打卡 这次cv的学习,感觉第一次感到这么困难,主要是环境的配置,因为pytorch一直没有安装好,感谢队长的热心帮助,才勉强安装好,但是运行了一会,还是崩溃了。这对我真是感觉难受。 task1-任务理解 先把数据集下载完毕,按照手册上内容,输入安装包 import json import cv2 import numpy as np import matplotlib.pyplot as plt train_json = json.load(open(r’C:\Users\Administr
2020-05-20 22:36:11 151
原创 task5-模型融合
1定义 如果我们要同时利用训练过个模型,就需要将分别的训练结果结合起来作为总的训练结果。 2常用方法 简单加权融合: 回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean); 分类:投票(Voting) 综合:排序融合(Rank averaging),log融合 stacking/blending: 构建多层模型,并...
2020-04-04 20:38:18 132
原创 task4:建模调参
建模调参 一前言 1数据导入。 2使用管道进行创建工作流。 二k折交叉验证 2.1 原理 2.2实现 三曲线调参 3.1绘制曲线 3.2绘制样本准确率与曲线的关系 s1:数据导入,数据的预处理 s2:交叉验证。 步骤 Step 1:使用不重复抽样将原始数据随机分为k份; Step 2:其中k-1份数据用于模型训练,剩下的那1份数据用于测试模型; Step 3:重复Step 2 k次,得到k个模型和...
2020-04-01 17:58:21 100
原创 task3 特征工程
task3 ,特征工程 1什么是特征工程 就是发现对因变量y有明显影响作用的特征,通常称自变量x为特征,特征工程的目的是发现重要特征。一般来说,特征工程大体上可以分为三个方面,一是特征构造,而是特征选择,三是特征生成。 1.1数据理解,EDA部分 1.2数据清洗 1.2.1特征变换(分类编码,归一化,one-hot) 1.2.2缺失值处理,参考链接https://www.zhihu.com/tar...
2020-03-28 15:03:36 141
原创 task2:二手车价格预测,EDA数据探索分析
task2:二手车价格预测,EDA数据探索分析1EDA是什么及意义?1.1数据导入功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导...
2020-03-24 16:49:30 128
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人