一、背景与需求分析

随着数字化阅读的普及,用户对阅读数据的管理需求日益增长。微信读书作为主流阅读平台,积累了大量用户的阅读笔记、划线内容和书籍元数据。但这些数据的利用往往受限于平台封闭性,用户难以将数据与外部工具(如 AI 助手)结合,实现高效的知识整理与深度分析。

解决方案目标:

通过 Cursor与微信读书 MCP 服务器的结合,搭建一个轻量级桥梁,将微信读书的阅读数据无缝接入 ,实现以下目标:

  • 数据互通:将微信读书的笔记、划线内容、书籍信息等实时同步至本地。
  • 智能分析:利用 AI 对阅读数据进行分类、总结、主题提取等操作,辅助知识管理。
  • 高效交互:通过自然语言交互快速检索阅读内容,生成摘要或关联知识图谱。
二、技术架构与核心组件

该解决方案的核心是  微信读书 MCP 服务器,其作用是作为中间层,将微信读书MCP服务端与MCP客户端连接起来。以下是技术架构的分层说明:

  1. 数据源层(微信读书)
    • 微信读书的用户数据(笔记、划线、书架信息)通过 API 或 Cookie 模拟登录方式获取。
    • 需要用户授权并提供 Cookie 值,确保数据访问的合法性与安全性。
  2. 中间层(MCP 服务器)
    • 功能
      • 实现微信读书 API 与 MCP客户端的协议转换(如 MCP 协议)。
      • 提供标准化接口(如 /books/notes)供客户端调用。
      • 支持数据缓存、格式转换(Markdown/PDF 导出)及权限控制。
    • 技术实现
      • 通过 .env 文件配置 Cookie 和服务器参数,支持灵活部署。
  3. 客户端层(AI 工具Cursor)
    • 功能
      • 调用 MCP 服务器接口,获取并处理阅读数据。
      • 利用 AI 模型对数据进行分析(如主题分类、关键词提取)。
      • 提供用户界面(CLI 或 GUI)实现交互式操作。
    • 技术实现
      • 集成 MCP 协议支持,通过 API 请求获取数据。
三、部署与配置步骤
1. 环境准备
  • 硬件要求
    • 一台可运行 Node.js 的笔记本。
    • 操作系统:Windows。
  • 软件依赖
    • Node.js (v16+)
    • Git
    • 微信读书网页版账号及 Cookie(需登录后获取)。
2. 获取微信读书 Cookie
  1. 打开微信读书网页版并登录。
  2. 在浏览器中按 F12 打开开发者工具或者检查,切换到 应用 标签。
  3. 刷新页面,任意点击一个请求(如书籍列表),在 Cookies 部分复制所有 Cookie 值。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP

3. 部署 MCP 服务器

1、 克隆项目仓库

git clone https://github.com/ChenyqThu/mcp-server-weread.git
   cd mcp-server-weread
  • 1.
  • 2.

2、安装依赖

npm install
  • 1.

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_02

3、 配置环境变量

在项目根目录创建 .env 文件,填写以下内容:

WEREAD_COOKIE=你的微信读书Cookie值
  • 1.

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_03

4、 启动服务器

npm run build
   node build/index.js
  • 1.
  • 2.

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_04

4. 集成 MCP客户端

1、 配置 MCP 服务器地址

在 Trae 的配置文件中添加以下内容:

{
  "mcpServers": {
    "mcp-server-weread": {
      "command": "node",
      "args": [
        "/Users/Administrator/Desktop/mcp-server-weread-master/mcp-server-weread-master/build/index.js"
      ],
      "env": {
        "WEREAD_COOKIE": "ptcz=4d8471e854679752ebffe8f9fbf3bad规范化bfe3e2350e8e962c0aed9e6fd3885d97eeeae;RK=+LPBEZJXZF;wr_fp=2792ds245f804198;wr_gid=49427334125;wr_rt=web%40Qjih~Ox~VNsdYpu7vTI6M_AL;wr_skey=b2m2234u7pM;wr_vid=8522234922"
      }
    }
  }
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_05

2、. 验证连接

在Cursor AI中中发送测试请求

{
  "action": "get_books",
  "params": {}
}
  • 1.
  • 2.
  • 3.
  • 4.

返回如下结果。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_06

四、功能与应用场景
1. 无缝访问阅读数据
  • 阅读知识管理:比如可以根据书架上已读书籍,总结下分析我的阅读数据。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_07

  • 书架信息同步: 用户可在 AI 客户端中实时查看微信读书的书架,比如列出我最近阅读书籍的进度。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_08

  • 笔记与划线管理: 通过命令或自然语言查询书籍的笔记内容,例如: "显示最近所读书籍的划线内容"微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_09
查看《企业级云原生架构:技术、服务与实践》更多笔记
  • 1.

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_10

2. 智能分析与知识管理
  • 主题分类与标签生成: AI 自动对笔记内容进行主题聚类,生成标签,便于后续检索。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_11

  • 知识图谱构建: 将多本书籍的关联内容可视化,例如:生成《企业级云原生架构》这本书中的概念关联图。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_12

  • 摘要与导出: 用户可一键导出书籍笔记为 Markdown 或 PDF,用于知识总结或分享。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_13

打开这个MD文档。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_14

3. 交互式学习与创作
  • 问答与归纳: 用户可通过自然语言提问,例如: 提取下《理解人性》这本书的金句,AI 将结合笔记内容生成答案。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_15

  • 内容创作辅助: 利用阅读数据生成推荐内容。比如:我在北京,根据书架上的旅游书籍,帮我推荐一个五一的目的地。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_16

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_17

4. 知识共享
  • 知识共享: 比如:根据《手机摄影技法大全》来提取摄影知识,并生成分享文档。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_18

生成的分享文档。

微信读书阅读数据的AI赋能:MCP服务器实现知识管理新范式_MCP_19

五、优势与创新点
  1. 隐私与安全
    • 数据存储在本地服务器,避免敏感信息泄露。
  2. 支持多平台
    • 跨平台兼容:支持 Windows/macOS/Linux 系统。
  3. 低成本与易用性
    • 开源项目免费使用,部署简单且成本低。
  4. AI 赋能的深度体验
    • 通过 AI 分析挖掘阅读数据价值,提升学习效率。
    • 自然语言交互简化操作流程,无需手动整理内容。
六、总结

通过 Cursor AI与微信读书 MCP 服务器的结合,用户能够突破平台限制,将阅读数据转化为可操作的知识资产。该方案不仅提升了阅读效率,还为 AI 辅助学习、创作和协作提供了全新可能性。

未来,随着 MCP 协议的完善和 AI 模型的升级,此类工具将进一步推动个性化知识管理的发展,成为数字阅读生态的重要组成部分。