这个方法是添加变量到直方图中,但是不配合其他的方法,根本就显示不出来它的意义!
以下代码如下:
import tensorflow as tf
# 定义两个变量
a = tf.placeholder(dtype=tf.float32, shape=[])
b = tf.placeholder(dtype=tf.float32, shape=[])
#添加变量进去
tf.summary.scalar('a', a)
tf.summary.scalar('b', b)
# 将所有summary全部保存到磁盘,以便tensorboard显示
smy = tf.summary.merge_all()
#初始化全局变量
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
# 初始化变量
sess.run(init_op)
#把信息存储在具体的文件夹里面
writer = tf.summary.FileWriter("tjn", sess.graph)
for i in range(5):
#赋值
sumers=sess.run(smy,feed_dict={a:i+9,b:i+2})
#把步骤都记录下来
writer.add_summary(summary=sumers,global_step=i)
运行结束以后,tjn文件夹里面会与日志

cmd命令,切换到相应的文件夹下,启动tensorborder

然后再页面上输入localhost:6006

本文介绍了一种使用TensorFlow实现变量可视化的技术。通过定义变量并使用tf.summary.scalar将其添加到直方图中,随后通过TensorBoard展示这些变量的变化趋势。示例代码展示了如何设置变量、进行迭代赋值并将结果保存到指定目录,最后通过TensorBoard查看结果。
2651

被折叠的 条评论
为什么被折叠?



