抽样:理论与应用(第二版) 金勇进 课程笔记 1~4章

本文介绍了抽样调查的基本概念,包括抽样调查的类型、概率与非概率抽样、等概率与不等概率抽样,以及抽样调查在节省成本、提高数据质量和时效性方面的优势。探讨了目标总体与抽样总体的区别,抽样框的重要性,以及总体参数与统计量的计算方法。此外,还详细解析了估计量的方差、偏倚、均方误差,抽样误差与非抽样误差的区别,以及几种基本抽样方法,如简单随机抽样、整群抽样、多阶段抽样、系统抽样和分层抽样。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本章重点名词:抽样调查的类型,抽样调查与普查的关系,目标总体,抽样总体,抽样框,抽样单元,总体特征与估计量,方差,偏倚,均方误差,抽样误差,非抽样误差,精度。

1.1调查与抽样调查


1.1.1调查

1.1.2抽样调查

抽样调查: 是一种非全面调查,是指从研究对象全体中抽取一部分单元作为样本,根据对所抽取样本进行调查获得有关总体目标的了解。
1.非概率抽样调查:判断选样,方便抽样,自愿样本,配额抽样。 见书p3页,我觉得并不是重点。
2.概率抽样(定性分析/定量分析):随机抽样,依据随机原则,按照某种事先设计的程序,从总体中抽取部分单元的抽样方法,它具有下面几个特点:
(1)排除主管上有意识的抽取单元,使没个单元都有一定机会被抽中。
(2)每个单元被抽中概率可计算
(3)估计两与样本单元观测值有关,也与入样概率有关,所以用样本估计总体需要考虑抽中概率。入样概率可计算,样本统计量分布因此可知,就具有样本推断总体理论基础
3.非概率抽样(定性分析)
需要掌握: 能够论述什么情况下用概率抽样,什么情况下用非概率抽样

4.等概率抽样与不等概率抽样

1.等概率抽样, 如果大家被抽到概率相同,权重就相同,

2.不等概率抽样权重不一样,数据的处理会复杂一些。有些时候不等概率会更有效率,

1.1.3抽样调查的作用

1.节约费用
2.时效性强
3.可以承担全面调查无法胜任的项目
4.有助于提高数据质量

1.1.4抽样调查与普查

普查优点:对于有关国计民生的重要现象,有时需要了解总体中每个单元的情况,这时就需要普查。如人口普查,全国经济普查,全国农业普查等。
抽样调查:
(1)对普查起到补充作用
(2)对普查进行修正
(3)进行深层次分析
(4)快速获得总体的估计量
(5)普查为抽样调查提供抽样框

1.1.5抽样调查应用领域

1.2 基本概念


1.2.1目标总体与抽样总体

目标总体:要研究对象的全体
抽样总体:从中抽取样本的总体

1.2.2抽样框与抽样单元

抽样框(重点)
好的抽样框:一个抽样单元对应一个目标
抽样框缺陷:

  • 属于目标总体,但未出现在抽样总体中
  • 不属于目标总体,但出现在抽样总体内
  • 多重连接,目标总体有1个被抽到的概率为 k n \frac{k}{n} nk
  • 一个抽样单元对应三个目标单元
    抽样框不同类型:
    名录框,区域框,自然框

1.2.3总体参数与统计量

1.总体参数:抽取样本的目的是要得到总体的某些特征(参数)
总体参数四种类型
(1) 总体均值:总体平均值
Y m e a n = 1 N ∑ i = 1 n Y i Y_{mean}= \frac{1}{N}\sum_{i=1}^n{Y_i} Ymean=N1i=1nYi

(2) 总体总值:总体总量
Y = ∑ i = 1 N Y i = N Y m e a n Y = \sum_{i=1}^NY_i=NY_{mean} Y=i=1NYi=NYmean

(3) 总体比例:如全部产品中合格品所占比例
P = ∑ i = 1 N Y i N P = \frac{\sum_{i=1}^NY_i}{N} P=Ni=1NYi

(4) 总体比率:它是两个总体总量或总体均值之比,如固定资产利用率,人均可支配收入变动率等
R = Y X = Y m e a n X m e a n R = \frac{Y}{X}=\frac{Y_{mean}}{X_{mean}} R=XY=XmeanYmean
2.样本 :把从总体中按一定程序抽出的部分总体基本单元的集合称为样本,样本中包含的基本单元的个数n称为样本量,统计量是根据样本n个单元的变量值计算出的一个量,也叫估计量。
估计量有
(1)均值估计:用样本均值作为总体均值的估计
Y ‾ ^ = y ‾ = 1 n ∑ i = 1 n y i \hat{\overline{Y}}=\overline{y}=\frac{1}{n}\sum_{i=1}^ny_i Y^=y=n1i=1nyi
其中 y i y_i yi代表第i个样本单元的观测值
(2)总值估计:用样本均值和总体单元数得到总值估计。
Y ^ = N y ‾ = N n ∑ i = 1 n y i \hat{Y}=N\overline{y}=\frac{N}{n}\sum_{i=1}^ny_i Y^=Ny=nNi=1nyi
(3) 比例估计,用样本比例作为总体比例的估计
P ^ = p = 1 n ∑ i = 1 n y i \hat{P} = p=\frac{1}{n}\sum_{i=1}^ny_i P^=p=n1i=1nyi
y i y_i yi为示性变量,只有1,0
(4)比率估计:用样本比率作为总体比率的估计
R ^ = r = ∑ i = 1 n y i ∑ i = 1 n x i = y ‾ x ‾ \hat{R}=r=\frac{\sum_{i=1}^ny_i}{\sum_{i=1}^nx_i}=\frac{\overline{y}}{\overline{x}} R^=r=i=1nxii=1nyi=xy

1.2.4 估计两方差、偏倚、均方误差

1.估计量方差表达式 :方差反应随机因素
V ( θ ^ ) = E [ θ ^ − E ( θ ^ ) ] 2 V(\hat{\theta})=E[\hat{\theta}-E(\hat{\theta})]^2 V(θ^)=E[θ^E(θ^)]2
θ ^ \hat{\theta} θ^为总体参数 θ \theta θ的估计, E ( θ ^ ) E(\hat{\theta}) E(θ^)为估计值的数学期望
2.偏倚 :root mean square 与MSE没区别(这里我希望叫他偏差)
误差为0就是无偏估计量

1.2.5 抽样误差与非抽样误差

抽样误差:由于抽样的随机性引起的,样本总量对总体参数推断时候产生的误差,特征是他的误差可计算。

  • 可控制
  • 可计算
  • 在其他条件相同情况下,样本量越大抽样误差越小,
  • 如果抽样误差很大:增大样本量减小误差,更改抽样方法。
    非抽样误差:除了抽样误差以外由其他原因带来的误差,可分三类

(1)抽样框误差

(2)无回答误差(缺失数据)

(3)计量误差 (调查环境影响:如测视力,跟光有关系,跟距离有关系,环境有关系)

1.3几种基本抽样方法


1.3.1 简单随机抽样(simple random sampling)

简单随机抽样是最简单不加其他条件,是其他抽样方法的基础

简单随机抽样实现方式有两种

1.放回抽样:抽取过程中每次抽取都是独立的,但可能使得单元被重复抽到,在统计学中每次抽取都是一个独立事件,没个样本随机抽取概率相等

2.无放回抽样:(条件概率)
无论是又放回抽样还是无放回抽样被抽取到的概率都是相等的,
如200个同学无放回抽样,第二次抽取的概率为 199 200 ∗ 1 199 \frac{199}{200}*\frac{1}{199} 2001991991

3.实施方法

-抽签

-随机数表

-计算机抽取

当样本趋于无穷,小s方差 是大S方差无偏估计

随机抽样能够抽取样本组合可能性 N n N^n Nn(有放回)

公式 :详看书上公式和例题

1.3.3整群抽样(cluster sampling)

将总体中若干个基本单元合并为组,这样的组称为群,抽样时直接抽取群,然后对选择的群所有基本单位进行调查。

1.3.4多阶段抽样

采用类似整群抽样的方法,首先抽取群,但并不是调查群内的所有基本单元,而是在进行一步抽样,从选中的群中抽取若干个基本单元进行调查。

1.3.5系统抽样(systematic sampling)

将总体中所有单元按一定顺序排列,在规定范围内抽取一个单元作为初始单元,然后按照事先定好的规则抽取其他单元
如r+k,r+2k,…r+nk

在这里插入图片描述
4.计算样本量时候需要总体方差,当总体方差不知道时候需要怎么办,需要估计总体方差,(在实际计算中用样本方差计算,是理论估计)这也解释了下面的公式我们无法得到S时候怎么办。
在这里插入图片描述
在这里插入图片描述
允许抽样误差代表置信区间范围,区间太大就没有意义,区间范围由设计人员确定。

t:概率度计算代表正太分布中正负1.96倍标准差,使误差 α \alpha α=0.05,也就是正确概率为0.95
推断分三个阶段:1.计算点估计值,2.计算估计点误差,3.计算置信区间
1.点估计
y ‾ = 1 n ∑ n y i \overline{y}=\frac{1}{n}\sum^ny_i y=n1nyi
2.计算估计点误差
v ( y ‾ ) = ( 1 − f ) s 2 n v(\overline{y})=(1-f)\frac{s^2}{n} v(y)=(1f)ns2
3.计算总体参数置信区间

在这里插入图片描述
需要会讨论样本量需要条件:总体情况,误差要求,置信区间要求。
在这里插入图片描述
c0为费用并无直接关系,c1为单位,需要去考虑允许误差,方差,与费用的关系

根据方差和允许误差 Δ \Delta Δ 求样本量:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
国外研究:数据控制在什么范围数据最有力,最省钱,质量最高===相对控制在0.05, 0.05-0.1是常规范围
在这里插入图片描述
例如飞船的零件和超市卖的香肠的直径误差,精度有不同判别标准,飞船肯定需要误差越小越好,而火腿肠则不需要误差很小。
抽样最适合的领域是大范围的,规模越大抽样调查越高。
论述题:简单随机抽样有关问题,什么是简单随机抽样,他的特征,样本量分配,影响样本量的因素, 计算题:计算均值,计算比率,计算样本量等

1.3.2 分层抽样(stratified sampling)

分层原则:层内方差尽可能小,层间方差尽可能大。(展开描述)
将抽样单元按某种特征或某种规则划分为不同的层,然后从不通的层中独立、随机的抽取样本,然后在合并起来。如一大锅汤,尝一勺就知道咸淡,因为总体样本量方差很小,每个位置的分布都是一样的。所以我们要分的层
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
k可以看出在计算样本点估计的时候只是增加了 W i W_i Wi(权重),而 W i W_i Wi为i层样本总量与总体量的比值 n N \frac{n}{N} Nn
在这里插入图片描述

同样在估计点方差计算上也是在求每层方差* W i W_i Wi后求和
在这里插入图片描述
如何分配每层抽取样本数,最优方法是内曼分配,当不满足内曼分配时应该选择按比例分配。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值