题目描述:
给你一个二叉树的根节点 root
, 检查它是否轴对称。
解答:
法一:递归法
首先要确定采用什么遍历方式来进行判断,我第一个想法是使用层序遍历,检查每一层的遍历结果翻转后是否相同,但是经过尝试层序遍历难以实现,如[1,2,2,null,3,null,3]这种情况,层序遍历判断错误。
然后思考,判断二叉树对称,其实就是判断其左子树的外层和其右子树的外侧是否相同,其左子树的内侧和其右子树的内侧是否相同,如下图所示:
因此对于左子树进行后序遍历:左右中,右子树进行后序遍历:右左中。
采用递归的方式进行实现:
一层一层进行比较,先比较外侧再比较内侧。
依然是对递归的三要素进行考虑
(1)参数和返回值:参数分别为节点的左右节点,返回值为bool类型,二者是否相同。
bool compare(TreeNode* left, TreeNode* right)
(2)终止条件 :
返回比较的结果,一共分为两大类,有NULL节点和无NULL节点。
对于有NULL节点的情况而言,有以下几种:
- 左节点为NULL,右节点不为NULL返回false;
- 左节点不为NULL,右节点为NULL返回false;
- 左右节点均为NULL返回true;
对于无NULL节点,二者比较val,不同返回false。
// 首先排除空节点的情况
if (left == NULL && right != NULL) return false;
else if (left != NULL && right == NULL) return false;
else if (left == NULL && right == NULL) return true;
// 排除了空节点,再排除数值不相同的情况
else if (left->val != right->val) return false;
(3)内部处理逻辑:
无NULL节点且左右节点相同,进行处理。先进行左子树左节点和右子树右节点的比较(外侧),再进行左子树右节点和右子树左节点的比较(内侧)。
bool outside = compare(left->left, right->right); // 左子树:左、 右子树:右
bool inside = compare(left->right, right->left); // 左子树:右、 右子树:左
最终代码实现:
class Solution {
public:
bool compare(TreeNode* left, TreeNode* right) {
//有空节点的三种情况
if (left == NULL && right != NULL) return false;
else if(left != NULL && right == NULL) return false;
else if(left == NULL && right == NULL) return true;
//值不相同的情况
else if(left->val != right->val) return false;
//左右节点不为空且数值相同
else{
bool out_Result = compare(left->left, right->right);//比较外侧
bool in_Result = compare(left->right, right->left);//比较内侧
bool result = out_Result && in_Result;
return result;
}
}
bool isSymmetric(TreeNode* root) {
if (root == NULL)
return true;
bool result = compare(root->left, root->right);
return result;
}
};
法二:迭代法
对于迭代法而言其实已经没有遍历方式了,使用一个队列存储下次需要比较的元素。内部处理方式和递归时基本相同,
对于有NULL节点的情况而言,有以下几种:
- 左节点为NULL,右节点不为NULL返回false;
- 左节点不为NULL,右节点为NULL返回false;
- 左右节点均为NULL使用continue,继续下轮循环(此处注意因为不是递归,必须队空才返回true);
对于无NULL节点且二者val相同,左节点的左孩子,右节点的右孩子先入队(比较外侧);左节点的右孩子,右节点的左孩子入队(比较内侧)。
代码实现:
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (root == NULL)
return true;
queue<TreeNode*>que;
que.push(root->left);
que.push(root->right);
while(!que.empty()){
TreeNode* left = que.front();
que.pop();
TreeNode *right = que.front();
que.pop();
if (left == NULL && right != NULL) return false;
else if (left != NULL && right == NULL) return false;
else if (left == NULL && right == NULL) continue;
else if (left->val != right->val) return false;
else{
que.push(left->left);
que.push(right->right);
que.push(left->right);
que.push(right->left);
}
}
return true;
}
};
100. 相同的树
题目描述:
给你两棵二叉树的根节点 p
和 q
,编写一个函数来检验这两棵树是否相同。
如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。
解答:
这道题和对称二叉树的思路类似,稍有不同。此题对于两棵树无需采用不同的遍历方式,直接全部采用先序遍历依次比较即可,依旧采用递归法进行解决。
递归法三要素:
(1)参数和返回值:参数为两个根节点,返回值为是否相同。
(2)终止条件 :与101题相似,参考101。
(3)内部处理逻辑:无NULL节点且二者val相同,依次比较两个节点的左节点和右节点。
代码实现:
class Solution {
public:
bool isSameTree(TreeNode* p, TreeNode* q) {
if(p == NULL && q == NULL)
return true;
else if (p == NULL && q != NULL)
return false;
else if (p != NULL && q == NULL)
return false;
else if (p->val != q->val)
return false;
else
return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
}
};
572. 另一棵树的子树
题目描述:
给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在,返回 true ;否则,返回 false 。
二叉树 tree 的一棵子树包括 tree 的某个节点和这个节点的所有后代节点。tree 也可以看做它自身的一棵子树。
解答:
和相同的树思路类似,本题中先找到遍历root,找到一个值和subRoot相同的节点,然后比较二者是否是相同的树,一旦得到true直接返回即可。
代码实现:
class Solution {
public:
bool isSameTree(TreeNode* p, TreeNode* q) {
if(p == NULL && q == NULL)
return true;
else if (p == NULL && q != NULL)
return false;
else if (p != NULL && q == NULL)
return false;
else if (p->val != q->val)
return false;
else
return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
}
bool isSubtree(TreeNode* root, TreeNode* subRoot) {
queue<TreeNode*> que;
bool result = false;
if (root) que.push(root);
while(!que.empty()){
int size = que.size();
for (int i = 0; i<size; i++){
TreeNode* p = que.front();
if(p->val == subRoot->val){
result = isSameTree(p, subRoot);
if (result == true)
return result;
}
que.pop();
if (p->left) que.push(p->left);
if (p->right) que.push(p->right);
}
}
return result;
}
};