python_sklearn机器学习算法系列之LinearRegression线性回归

原创 2018年04月15日 17:00:34

        本文主要是通过程序来学习python 中sklearn的LinearRegression线性回归这一函数的基本操作和使用,注意不是用python纯粹从头到尾自己构建线性回归,既然sklearn提供了现成的我们直接拿来用就可以了,至于线性回归的原理非常简单,这里不做进一步解释(可以参考https://blog.csdn.net/sxf1061926959/article/details/66976356?fps=1&locationNum=9)

        LinearRegression的使用非常简单,主要分为两步:

一:使用 fit(x_train,y_train)对训练集x, y进行训练。

二:使用predict(x_test) 训练得到的估计器对输入为x_test的集合进行预测(x_test可以是测试集,也可以是需要预测的数 据)。

      本次用的源数据是 datasets.load_diabetes数据,这是一个糖尿病的数据集,data部分主要包括442行数据,10个属性值,分别是:Age(年龄)、性别(Sex)、Body mass index(体质指数)、Average Blood Pressure(平均血压)、S1~S6一年后疾病级数指标;Target为一年后患疾病的定量指标。为了后面绘图方便本程序中只用了data中的一个参数作为自变量(实际自变量中并不限于一个属性或特征值)

代码如下:

#LinearRegression线性回归
from sklearn import datasets,linear_model
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl

diabetes=datasets.load_diabetes()
diabetes_x=diabetes.data[:,np.newaxis ,2]               #取第三列数据

diabetes_x_train=diabetes_x[:-20]
diabetes_x_test=diabetes_x[-20:]

diabetes_y_train=diabetes.target[:-20]
diabetes_y_test=diabetes.target[-20:]

#核心代码
regr=linear_model.LinearRegression()
regr.fit(diabetes_x_train,diabetes_y_train)             #用训练集进行训练模型

print('Input Values')
print(diabetes_x_test)

#核心代码
diabetes_y_pred=regr.predict(diabetes_x_test)
print('Predicted Output Values')
print(diabetes_y_pred)

#绘图
mpl.rcParams['font.sans-serif'] = [u'SimHei']            #用来正常显示中文标签    
mpl.rcParams['axes.unicode_minus'] = False               #用来正常显示负号

plt.scatter(diabetes_x_test,diabetes_y_test,color='black')
plt.plot(diabetes_x_test,diabetes_y_pred,color='red',linewidth=1)

plt.xlabel('体质指数', fontsize=12)  
plt.ylabel('一年后患疾病的定量指标', fontsize=12)
plt.title(u'LinearRegression线性回归', fontsize=12)

plt.show()

运行结果:



更多算法可以参看博主其他文章,或者github:https://github.com/Mryangkaitong/python-Machine-learning

机器学习之线性模型

-
  • 1970年01月01日 08:00

机器学习之线性回归(Linear Regression)

线性学习中最基础的回归之一,下面从线性回归的数学假设,公式推导,模型算法以及实际代码运行几方面对这一回归进行全面的剖析~...
  • July_sun
  • July_sun
  • 2016-11-18 21:53:23
  • 10233

python_sklearn机器学习算法系列之K-Means(硬聚类算法)

          本文主要目的是通过一段及其简单的小程序来快速学习python 中sklearn的K-Means这一函数的基本操作和使用,注意不是用python纯粹从头到尾自己构建K-Means,既...
  • weixin_42001089
  • weixin_42001089
  • 2018-04-15 19:14:28
  • 30

机器学习经典算法详解及Python实现--线性回归(Linear Regression)算法

回归是统计学中最有力的工具之一。回归算法用于连续型分布预测,针对的是数值型的样本,使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别标签...
  • suipingsp
  • suipingsp
  • 2014-12-23 12:37:59
  • 41618

Python线性回归实例--Python,sklearn,LinearRegression

Python sklearn中的LinearRegreesion实例
  • playgoon2
  • playgoon2
  • 2017-08-14 15:30:40
  • 3386

LinearRegression

  • 2018年03月18日 13:05
  • 3KB
  • 下载

线性回归例子(Linear Regression Example)

原文地址: http://sklearn.lzjqsdd.com/auto_examples/linear_model/plot_ols.html#example-linear-model-plot...
  • hongxue8888
  • hongxue8888
  • 2017-06-10 20:39:50
  • 1107

基于spark用线性回归(linear regression)进行数据预测

ubuntu+spark+scala实现线性回归(linear regression)算法(代码+数据)
  • wtt561111
  • wtt561111
  • 2017-03-08 13:05:48
  • 3866

Spark-ML 线性回归 LinearRegression (1)

Spark-ML 线性回归 LinearRegression参数详述:
  • qq_24734217
  • qq_24734217
  • 2017-07-20 10:26:14
  • 341

机器学习入门系列之二---线性回归算法学习

线性回归算法学习还是使用系列一监督算法中涉及的案例(房价分析),那么我们如何使用线性回归算法呢?   首先我们要开始算法初始化设置工作:   设置算法训练数据集 (人工标注的正确答案数据设置) 算法...
  • firehadoop
  • firehadoop
  • 2017-04-09 17:33:27
  • 416
收藏助手
不良信息举报
您举报文章:python_sklearn机器学习算法系列之LinearRegression线性回归
举报原因:
原因补充:

(最多只允许输入30个字)