JAVA数据结构和算法:
数据结构分类:线性结构和非线性结构:
问题一:
什么是线性和非线性;
个人的理解是:数据结构中线性结构指的是数据元素之间存在着“一对一”的线性关系的数据结构;
线性结构包括:数组,链表,队列,栈;
非线性结构包括:树,图,表;
详解:
一.线性结构
1.数组
特点:我们都知道数组中的元素在内存中连续存储的,可以根据是下标快速访问元素,因此,查询速度很快,然而插入和删除时,需要对元素移动空间,比较慢。
数组使用场景:频繁查询,很少增加和删除的情况。
2.链表
特点:元素可以不连续内存中,是以索引将数据联系起来的,当查询元素的时候需要从头开始查询,所以效率比较低,然而添加和删除的只需要修改索引就可以了
链表使用场景:少查询,需要频繁的插入或删除情况
3.队列
特点:先进先出,
队列使用场景:多线程阻塞队列管理非常有用
4.栈
特点:先进后出,就像一个箱子,
栈使用场景:实现递归以及表示式
5.数组与链表的区别
数组连续,链表不连续(从数据存储形式来说)
数组内存静态分配,链表动态分配
数组查询复杂度O(1),链表查询复杂度O(n)
数组添加或删除,复杂度O(n),链表添加删除,复杂度O(1)
数组从栈中分配内存。链表从堆中分配内存。
补充:时间复杂度O(1), O(n), O(logn), O(nlogn)指什么
描述算法复杂度时,常用o(1), o(n), o(logn), o(nlogn)表示对应算法的时间复杂度,是算法的时空复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
O(1):
是最低的时空复杂度了,代表耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。哈希算法
就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)
O(n):
代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法
。
O(n^2):
代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序
,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
O(logn):
代表当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找
就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
O(nlogn):
代表n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序
就是O(nlogn)的时间复杂度。
问题二:
c1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
特点:
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序
- 直接插入排序
基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n 个数插到前面的有序数中,使得这 n个数也是排好顺序的。如此反复循环,直到全部排好顺序
/**
* 插入排序法
*
* @param datas
*/
public static int[] sortInsert(int[] datas) {
for (int i = 1; i < datas.length; i++) {
int j = i - 1;
AlgorithmUtil.temp = datas[i];
for (; j >= 0 && AlgorithmUtil.temp < datas[j]; j--) {
datas[j + 1] = datas[j];
}
datas[j + 1] = AlgorithmUtil.temp;
}
return datas;
}
- 简单选择排序
基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
/**
* 选择排序
*
* @return
*/
public static int[] sortSelect(int[] datas) {
for (int i = 0; i < datas.length; i++) {
int index = i;
for (int j = i + 1; j < datas.length; j++) {
if (datas[j] < datas[index])
index = j;
}
if (i != index)
AlgorithmUtil.swap(datas, i, index);
}
return datas;
}
- 冒泡排序
基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
/**
* 冒泡排序
*
* @return
*/
public static int[] sortBubble(int[] datas) {
for (int i = 0; i < datas.length - 1; i++) {
for (int j = 0; j < datas.length - 1 - i; j++) {
if (datas[j] > datas[j + 1])
AlgorithmUtil.swap(datas, j, j + 1);
}
}
return datas;
}
- 快速排序
基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
/**
* 快速排序;分割数组
*
* @param datas
*/
public static int QuickPartition(int[] datas, int left, int right) {
int pivot = datas[left];
while (left < right) {
while (left < right && datas[right] >= pivot)
--right;
datas[left] = datas[right]; // 将比枢轴小的元素移到低端,此时right位相当于空,等待低位比pivotkey大的数补上
while (left < right && datas[left] <= pivot)
++left;
datas[right] = datas[left]; // 将比枢轴大的元素移到高端,此时left位相当于空,等待高位比pivotkey小的数补上
}
datas[left] = pivot; // 当left == right,完成一趟快速排序,此时left位相当于空,等待pivotkey补上
return left;
}
/**
* 快速排序;递归返回数组
*
* @param datas
*/
public static int[] sortQuick(int[] datas, int left, int right) {
if (left < right) {
int data = QuickPartition(datas, left, right);
sortQuick(datas, left, data - 1);
sortQuick(datas, data + 1, right);
}
return datas;
}
- 1.冒泡算法,2.选择算法,3.快速算法。4.插入算法,5.希尔算法,6.堆算法
基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
public class AlgorithmUtil {
public static int temp,index = 0;
/**
* 临时值交换
*
* @param datas
* 数组
* @param i
* @param j
*/
public static void swap(int[] datas, int i, int j) {
temp = datas[i];
datas[i] = datas[j];
datas[j] = temp;
}
/**
* 扩充数组长度
*
* @param datas
* @param value
* @return
*/
public static int[] expandArray(int[] datas, int value) {
if (datas.length <= index) {
int[] arrays = new int[datas.length * 2];
System.arraycopy(datas, 0, arrays, 0, datas.length);
datas = arrays;
}
datas[index] = value;
index++;
return datas;
}
}
原文链接:https://www.cnblogs.com/liaogan-1110/p/11377609.html