自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 西瓜书-Task05 支持向量机

录播视频:https://www.bilibili.com/video/BV1Mh411e7VU

2021-07-30 00:30:33 214

原创 西瓜书-task4神经网络

2021-07-26 00:25:57 340

原创 西瓜书-task03 决策树

2021-07-23 01:34:43 223

原创 西瓜书 task02线性回归

2021-07-20 02:48:30 187

原创 西瓜书-Task01-第一二章总结

第一章 绪论第二章 模型评估与选择

2021-07-14 00:26:21 100

原创 Task05 爬虫入门与综合应用

Task05 爬虫入门与综合应用Requests简介Requests是一款目前非常流行的http请求库,使用python编写,能非常方便的对网页Requests进行爬取,也是爬虫最常用的发起请求第三方库。安装方法:pip install requests或者conda安装conda install requestsre.status_code 响应的HTTP状态码re.text 响应内容的字符串形式rs.content 响应内容的二进制形式rs.encoding 响应内容的编码试一

2021-06-26 23:45:48 344

原创 Task04 Python操作PDF

Python 操作 PDFPDF 操作是本次自动化办公的最后一个知识点,初级的 PDF 自动化包括 PDF 文档的拆分、合并、提取等操作,更高级的还包括 WORD与PDF互转等初级操作一般比较常用,也可以解决较多的办公内容,所以本节将会主要介绍 PDF 的初级操作,具体内容将会从以下几个小节展开:相关介绍批量拆分批量合并提取文字内容提起表格内容提起图片内容转换为PDF图片添加水印加密与解码下面直接开始本节内容。1. 相关介绍Python 操作 PDF 会用到两个库,分别是:

2021-06-23 23:01:15 189

原创 Task03 python自动化之word操作

Task03 python自动化之word操作文章目录Task03 python自动化之word操作一、课前准备二、知识要点1.预热:初步认识docx(1)新建空白word并插入文字2. 正式:python自动化之word操作(1)整体页面结构介绍(2)字体设置(3) 插入图片与表格(4)设置页眉页脚(5)代码延伸三、项目实践一、需求二、需求分析三、代码四、总结一、课前准备python 处理 Word 需要用到 python-docx 库,终端执行如下安装命令:pip3 install py

2021-06-23 18:59:18 149

原创 Python自动化之Excel

Python自动化之Excel方法一:应用pip执行命令安装openpyxl模块pip install openpyxl方法二:在Pycharm中:File->Setting->左侧Project InterpreterExcel读取读取对应表格打开已经存在的Excel表格from openpyxl import load_workbookexl = load_workbook(filename = 'test.xlsx')print(exl.sheetnames)

2021-06-18 22:56:54 179

原创 Task01-python办公自动化-文件&邮件批量处理

Task01-python办公自动化-文件&邮件批量处理一、文件自动化处理1. 读写文件1.1 文件与文件路径1.2 当前工作目录1.3 路径操作1.3.1 绝对路径和相对路径1.3.2 路径操作1.3.3 路径有效性检查1.4 文件及文件夹操作1.4.1 用os.makedirs()创建新文件夹1.4.2 查看文件大小和文件夹内容1.5 文件读写过程1.5.1 用open()函数打开文件1.5.2 读取文件内容1.5.3 写入文件1.5.4 保存变量1.7 练习2. 组织文件2.1 sh

2021-06-17 00:09:46 1128 1

原创 Datawhale集成学习-XGBoost算法与LightGBM算法

Datawhale集成学习-XGBoost算法与LightGBM算法1.XGBoost算法2. Xgboost算法案例2.1 ## 分类案例2.1 回归案例2.3 XGBoost调参(结合sklearn网格搜索)3. LightGBM算法1.XGBoost算法  XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。  XGBoost本质上还是一个GBDT,但是力争把速度和效

2021-04-26 23:12:51 403

原创 Datawhale集成学习-前向分步算法与梯度提升决策树

Datawhale集成学习-前向分步算法与梯度提升决策树1. 前向分步算法1.1 加法模型1.2 前向分步算法1.3 前向分步算法与Adaboost的关系2. 梯度提升决策树(GBDT)2.1 基于残差学习的提升树算法:2.1 梯度提升决策树算法(GBDT)3 使用sklearn来使用GBDT1. 前向分步算法  回看Adaboost的算法内容,我们需要通过计算M个基本分类器,每个分类器的错误率、样本权重以及模型权重。我们可以认为:Adaboost每次学习单一分类器以及单一分类器的参数(权重)。接下来,

2021-04-23 23:38:22 209

原创 Datawhale集成学习-Boosting的思路与Adaboost算法

Datawhale集成学习-Boosting的思路与Adaboost算法一、Boosting的思路2.1 强可学习与弱可学习2.2 Boosting二、Adaboost算法2.1 Adaboost的基本原理三、使用sklearn对Adaboost算法进行建模  在前面的学习中,我们探讨了探讨了如何使用集成学习家族中的Bagging思想去优化最终的模型。那么,本章介绍的Boosting是与Bagging截然不同的思想。Boosting方法是使用同一组数据集进行反复学习,得到一系列简单模型,然后组合这些模型构

2021-04-20 22:24:02 239

原创 Datawhale集成学习-bagging的原理和案例分析

Datawhale集成学习-bagging的原理和案例分析一、决策树1.1、决策树的概述1.1.1、ID3算法:以信息增益为准则来选择最优划分属性1.1.2、C4.5算法:基于信息增益率准则选择最有分割属性的算法1.1.3、CART:以基尼系数为准则选择最优划分属性,可用于分类和回归1.2、决策树的分类1.2.1、分类树1.2.2、回归树1.3、决策树例子二、bagging的原理分析2.1、bootstrap的概念2.2、Bagging的基本流程三、随机森林3.1、随机森林的概述3.2、算法流程3.3、袋外

2021-04-17 22:57:59 1021

原创 Datawhale集成学习-投票法的原理和案例分析

Datawhale集成学习-投票法的原理和案例分析一、集成学习1.1 集成学习概述1.2 基学习器的选择二、集成学习中的投票法2.1 投票法的思路2.2 投票发原理分析2.3 投票法的局限三、投票法的案例分析3.1 基于sklearn,介绍pipe管道的使用以及voting的使用参考来源:1、开源学习内容可参考:https://github.com/datawhalechina/team-learning-data-mining2、《机器学习》,周志华 ,清华大学出版社一、集成学习1.1 集成

2021-04-14 23:02:20 1091 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除