JAVA多线程与高并发(九)[JMH入门了解,Disrupter]

link-JAVA多线程与高并发系列[前言,大纲,目录]

JMH

Java Microbenchmark Harness,Java为基准测试套件, 官网
2013年首发,由JIT开发人员开发,归于OpenJDK,用来量化性能

创建JMH测试

  1. 创建Maven项目,添加依赖
           <!-- https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-core -->
           <dependency>
               <groupId>org.openjdk.jmh</groupId>
               <artifactId>jmh-core</artifactId>
               <version>1.21</version>
           </dependency>
   
           <!-- https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-generator-annprocess -->
           <dependency>
               <groupId>org.openjdk.jmh</groupId>
               <artifactId>jmh-generator-annprocess</artifactId>
               <version>1.21</version>
               <scope>test</scope>
           </dependency>
  1. idea安装JMH插件 JMH plugin v1.0.3

  2. 由于用到了注解,打开运行程序注解配置

    compiler -> Annotation Processors -> Enable Annotation Processing

  3. 定义需要测试类PS (ParallelStream)

    public class PS {
    	static List<Integer> nums = new ArrayList<>();
    	static {
    		Random r = new Random();
    		for (int i = 0; i < 10000; i++) nums.add(1000000 + r.nextInt(1000000));
    	}
    
    	static void foreach() {
    		nums.forEach(v->isPrime(v));
    	}
    
    	static void parallel() {
    		nums.parallelStream().forEach(PS::isPrime);
    	}
    	
    	static boolean isPrime(int num) {
    		for(int i=2; i<=num/2; i++) {
    			if(num % i == 0) return false;
    		}
    		return true;
    	}
    }
    
  4. 写单元测试

    这个测试类一定要在test package下面

    package com.mashibing.jmh;
    
    import org.openjdk.jmh.annotations.Benchmark;
    
    import static org.junit.jupiter.api.Assertions.*;
    
    public class PSTest {
        @Benchmark
        public void testForEach() {
            PS.foreach();
        }
    }
    
  5. 运行测试类,如果遇到下面的错误:

    ERROR: org.openjdk.jmh.runner.RunnerException: ERROR: Exception while trying to acquire the JMH lock (C:\WINDOWS\/jmh.lock): C:\WINDOWS\jmh.lock (拒绝访问。), exiting. Use -Djmh.ignoreLock=true to forcefully continue.
    	at org.openjdk.jmh.runner.Runner.run(Runner.java:216)
    	at org.openjdk.jmh.Main.main(Main.java:71)
    

    这个错误是因为JMH运行需要访问系统的TMP目录,解决办法是:

    打开RunConfiguration -> Environment Variables -> include system environment viables

  6. 阅读测试报告

JMH中的基本概念

  1. Warmup
    预热,由于JVM中对于特定代码会存在优化(本地化),预热对于测试结果很重要

  2. Mesurement
    总共执行多少次测试

  3. Timeout

  4. Threads
    线程数,由fork指定

  5. Benchmark mode
    基准测试的模式

  6. Benchmark
    测试哪一段代码

官方样例

Disruptor

单机速度最快的MQ,支持高并发,性能极高,无锁,CAS
不支持序列化,消息都在内存中;
和kafka等不同,可以理解Disruptor为生产者-消费者模式的一个容器(回忆一下ConcurrentLinkedQueue),核心是一个环形Buffer

特点

  1. ConcurrentLinkedQueue是链表实现,Disruptor是数组实现的
  2. JDK中没有ConcurrentArrayQueue
  3. 无锁,高并发,使用环形Buffer,直接覆盖(不用清除)旧的数据,降低GC频率
  4. 实现了基于事件的生产者消费者模式(观察者模式)

详细介绍

主页
源码
GettingStarted
api
maven

RingBuffer

环形队列
RingBuffer的序号,指向下一个可用的元素
采用数组实现,没有首尾指针
对比ConcurrentLinkedQueue,用数组实现的速度更快
size必须是2的n次幂,用了和HashMap类似的小技巧,n % size = n & (size -1)

假如长度为8,当添加到第12个元素的时候在哪个序号上呢?用12%8决定

当Buffer被填满的时候到底是覆盖还是等待,由Producer决定

长度设为2的n次幂,利于二进制计算,例如:12%8 = 12 & (8 - 1) pos = num & (size -1)

Disruptor开发步骤

  1. 引入依赖
		<!-- https://mvnrepository.com/artifact/com.lmax/disruptor -->
        <dependency>
            <groupId>com.lmax</groupId>
            <artifactId>disruptor</artifactId>
            <version>3.4.2</version>
        </dependency>
1. 定义Event - 队列中需要处理的元素
public class LongEvent {
    private long value;

    public void set(long value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return Thread.currentThread().getName() + "| LongEvent{" +
                "value=" + value +
                '}';
    }
}
2. 定义Event工厂,用于填充队列

这里牵扯到效率问题:disruptor初始化的时候,会调用Event工厂,对ringBuffer进行内存的提前分配,提前把对象安排好了
来新的元素时,不需要再创建对象,而是直接把对应位置的对象的值修改
所以GC频率会降低

public class LongEventFactory implements EventFactory<LongEvent> {
    @Override
    public LongEvent newInstance() {
        return new LongEvent();
    }
}
3. 定义EventHandler(消费者),处理容器中的元素
public class LongEventHandler implements EventHandler<LongEvent> {
    @Override
    public void onEvent(LongEvent event, long sequence, boolean endOfBatch) {
        System.out.println(Thread.currentThread().getName() + ": Event: " + event);
    }
}
4.1 事件发布模板(元素入列)
long sequence = ringBuffer.next();  // Grab the next sequence
try {
    LongEvent event = ringBuffer.get(sequence); // Get the entry in the Disruptor
    // for the sequence
    event.set(8888L);  // Fill with data
} finally {
    ringBuffer.publish(sequence);
}
4.2 使用EventTranslator发布事件(元素入列)(方便,常用)
		// 没有参数的
        EventTranslator<LongEvent> translator1 = new EventTranslator<LongEvent>() {
            @Override
            public void translateTo(LongEvent event, long sequence) {
                event.set(8888L);
            }
        };

        ringBuffer.publishEvent(translator1);

	    // 一个参数
        EventTranslatorOneArg<LongEvent, Long> translator2 = new EventTranslatorOneArg<LongEvent, Long>() {
            @Override
            public void translateTo(LongEvent event, long sequence, Long l) {
                event.set(l);
            }
        };
        ringBuffer.publishEvent(translator2, 7777L);

        // 两个参数
        EventTranslatorTwoArg<LongEvent, Long, Long> translator3 = new EventTranslatorTwoArg<LongEvent, Long, Long>() {
            @Override
            public void translateTo(LongEvent event, long sequence, Long l1, Long l2) {
                event.set(l1 + l2);
            }
        };
        ringBuffer.publishEvent(translator3, 10000L, 10000L);

        // 三个参数
        EventTranslatorThreeArg<LongEvent, Long, Long, Long> translator4 = new EventTranslatorThreeArg<LongEvent, Long, Long, Long>() {
            @Override
            public void translateTo(LongEvent event, long sequence, Long l1, Long l2, Long l3) {
                event.set(l1 + l2 + l3);
            }
        };

        ringBuffer.publishEvent(translator4, 10000L, 10000L, 1000L);

        // 多个参数的
        EventTranslatorVararg<LongEvent> translator5 = new EventTranslatorVararg<LongEvent>() {
            @Override
            public void translateTo(LongEvent event, long sequence, Object... objects) {
                long result = 0;
                for(Object o : objects) {
                    long l = (Long)o;
                    result += l;
                }
                event.set(result);
            }
        };
        ringBuffer.publishEvent(translator5, 10000L, 10000L, 10000L, 10000L);

使用Lamda表达式的开发步骤(方便,常用)

lambda表达式中的"方法"也可以抽取出来,方便复用.
比如

disruptor.handleEventsWith((event, sequence, endOfBatch) -> System.out.println("Event: " + event));

改成:

static void handleFunction(event, sequence, endOfBatch){
    System.out.println("Event: " + event)
}

disruptor.handleEventsWith(ClassName::handleFunction);
package com.mashibing.disruptor;

import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.util.DaemonThreadFactory;

public class Main03
{
    public static void main(String[] args) throws Exception
    {
        // Specify the size of the ring buffer, must be power of 2.
        int bufferSize = 1024;

        // Construct the Disruptor
        Disruptor<LongEvent> disruptor = new Disruptor<>(LongEvent::new, bufferSize, DaemonThreadFactory.INSTANCE);

        // Connect the handler,定义消费者
        disruptor.handleEventsWith((event, sequence, endOfBatch) -> System.out.println("Event: " + event));

        // Start the Disruptor, starts all threads running
        disruptor.start();

        // Get the ring buffer from the Disruptor to be used for publishing.
        RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();

		// EventTranslator方式
        ringBuffer.publishEvent((event, sequence) -> event.set(10000L));

        System.in.read();
    }
}

ProducerType生产者线程模式

ProducerType有两种模式 Producer.MULTI和Producer.SINGLE

默认是MULTI,表示在多线程模式下产生sequence

如果确认是单线程生产者,那么可以指定SINGLE,效率会提升

如果是多个生产者(多线程),但模式指定为SINGLE,会出什么问题呢?

等待策略

  1. (常用)BlockingWaitStrategy:通过线程阻塞的方式,等待生产者唤醒,被唤醒后,再循环检查依赖的sequence是否已经消费。

  2. BusySpinWaitStrategy:线程一直自旋等待,可能比较耗cpu

  3. LiteBlockingWaitStrategy:线程阻塞等待生产者唤醒,与BlockingWaitStrategy相比,区别在signalNeeded.getAndSet,如果两个线程同时访问一个访问waitfor,一个访问signalAll时,可以减少lock加锁次数.

  4. LiteTimeoutBlockingWaitStrategy:与LiteBlockingWaitStrategy相比,设置了阻塞时间,超过时间后抛异常。

  5. PhasedBackoffWaitStrategy:根据时间参数和传入的等待策略来决定使用哪种等待策略

  6. TimeoutBlockingWaitStrategy:相对于BlockingWaitStrategy来说,设置了等待时间,超过后抛异常

  7. (常用)YieldingWaitStrategy:尝试100次,然后Thread.yield()让出cpu

  8. (常用)SleepingWaitStrategy : sleep

消费者异常处理

默认:disruptor.setDefaultExceptionHandler()

覆盖:disruptor.handleExceptionFor().with()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值