LLaMA
文章平均质量分 95
T1.Faker
此人很懒,什么都没有写
展开
-
探索稳定扩散技术中的LoRA权重激活:从模型微调到动漫风格图像生成的全过程
低秩适应(LoRA)技术是一种创新的方法,用于解决微调扩散器和大型语言模型(LLMs)的问题。在稳定扩散微调中,LoRA可应用于图像表示的交叉注意层,其中包含描述的潜在信息。为了理解模型微调的基本概念和方法,您可以参考Hugging Face扩散器的文档在这篇博客中,我们旨在介绍如何使用OpenVINO™优化构建Stable Diffusion + ControlNet管道,并启用LoRA权重,以便通过Stable Diffusion的Unet模型生成具有不同风格的图像。演示源代码基于。原创 2023-11-23 17:14:40 · 1176 阅读 · 1 评论 -
PEFT概述:最先进的参数高效微调技术
什么是PEFT什么是LoRA用例使用PEFT训练LLMs入门PEFT配置4位量化封装基础Transformer模型保存模型加载模型推理结论随着大型语言模型(LLMs)如GPT-3.5、LLaMA2和PaLM2在规模上不断扩大,对它们在下游自然语言处理(NLP)任务上进行微调变得越来越耗费计算和内存资源。参数高效微调(PEFT)方法通过仅微调少量额外的参数,同时冻结大多数预训练模型,解决了这些问题。这可以防止在大型模型中发生灾难性遗忘,从而使有限的计算资源能够进行微调。原创 2023-11-10 16:22:47 · 834 阅读 · 0 评论 -
利用RLHF优化大模型:提升性能与应用能力
随着数据科学和人工智能领域的不断发展,大型语言模型和RLHF作为强大的工具正逐渐成为各种领域的重要组成部分。通过预训练和微调,大型语言模型能够具备丰富的语言表达能力,而RLHF则能够根据人类反馈持续改进模型的性能,使其更加智能和适应不同任务。然而,我们也必须认识到RLHF仍然面临着一些挑战,如可扩展性、人类偏见、解释性等问题。解决这些问题需要跨学科的研究和合作,以确保RLHF的应用能够安全、可靠、高效地应对现实世界的挑战。原创 2023-07-25 10:05:31 · 1616 阅读 · 0 评论 -
LangChain入门指南
在日常生活中,我们主要致力于构建端到端的应用程序。有许多自动化机器学习平台和CI/CD流水线可以用来自动化我们的机器学习流程。现如今大模型的出现,如果我们想要借助OpenAI或hugging face创建一个LLM应用程序,在自己的本地部署并使用,但是手动安装大模型步骤太繁琐了,而且涉及到的环境,编译接口集成问题太多了,🚀相对比之下,LangChain简化了LLM模型的集成和开发过程,提供了更高的开发效率和易用性,同时保持了可扩展性和灵活性。原创 2023-06-19 15:00:01 · 2647 阅读 · 0 评论 -
一文读懂:LoRA实现大模型LLM微调
在深度学习中,权重矩阵通常具有完整秩,这意味着权重矩阵的行或列之间没有线性相关关系,也就是说,每个权重在模型中承担了不同的作用,没有冗余。权重矩阵具有完整秩的好处是,模型可以通过学习到的权重进行准确的预测和分类。通过使用低秩矩阵,我们可以降低参数的数量,减少计算和存储的开销,并且仍然保留了大部分原始权重矩阵的关键信息。因此,虽然预训练模型的权重在预训练任务中具有完整秩,但LoRA的作者指出,当预训练的大型语言模型适应新任务时,其固有维度很低,这是根据Aghajanyan等人的研究(2020)得出的。原创 2023-06-08 16:54:11 · 10551 阅读 · 4 评论