一、Hive 数据分区
1,Hive 数据分区的概念
在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作。有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念。Hive的分区是为了辅助查询,缩小查询范围,加快数据的检索速度和对数据按照一定的规格和条件进行管理。
2,分区的意义
现在科技的发展,数据量越来越大了,所以大数据平台基于HDFS在处理数据的时候就比较困难,Hive用SQL代码转换MapReduce 作业,并提交到 Hadoop 集群执行。Hve的分区表将数据分成多个分区,每个分区对应一个分区列的值,每个分区在 HDFS 里面其实就是表目录下的一个子目录。如果在查询的时候只需要特定分区的数据,那么 Hive 只会遍历该分区目录下的数据。这样能够可以避免全表扫描减低 IO,提升查询性能。
3,分区表的创建
CREATE TABLE table_name (column1 data_type, column2 data_type)
PARTITIONED BY (partition1 data_type, partition2 data_type,….);
// PARTITIONED BY Hive表分区关键字
4,Hive 分区类型
(1)动态分区
- 对分区表的一次性插入称为动态分区。
- 动态分区表从非分区表加载数据。
- 在加载数据的时候,动态分区比静态分区会消耗更多时间。
- 如果需要存储到表的数据量比较大,那么适合用动态分区。
- 假如要对多个列做分区,但又不知道有多少个列,那么适合使用动态分区。
- 动态分区不需要 where 子句使用 limit,不能对动态分区执行修改。
- 可以对内部表和外部表使用动态分区。
- 使用动态分区之前,需要把模式修改为非严格模式。set hive.mapred.mode=nostrict。

最低0.47元/天 解锁文章
261

被折叠的 条评论
为什么被折叠?



