学而思/奥数翻杯子问题的解法

翻杯子问题是奥数中的一个经典题型,大致问题就是如下所示:

学而思二年级课程中的翻杯子

 

这种题变化很多,其实也是有规律的,如果小朋友实在学不会,可以试试下面的公式

假设杯子的个数是N个,每次翻M个,那么最少全部翻过来的次数是X次,则公式如下:

上来第一步,先判断奇偶性:

一,如果N为奇数,M为偶数,则X是不存在的。为什么呢?一个杯子想要被翻过来,其被翻的次数一定是奇数次,那么N为奇数的情况下,所有杯子总共被翻的次数就是奇数个奇数相加,结果还是个奇数,而奇数是无法整除M这个偶数的,所以这种情况无法完成目标。

二,排除掉第一条,我们来看几种不同的情况:

2.1,N为M的整数倍,这个最简单,X=N/M,这个很好理解吧

2.2,N=M+1,这个第二简单,X=N,就是轮着翻,相当于每次翻一个

2.3,N>2M,也就是每次翻的数量不到总数的一半,这时怎么算呢,也是有公式的,因为我们需要一个杯子被翻奇数倍,所以就从每个杯子翻一次开始算,需要满足一个条件就是:所有杯子总共翻的次数要能够被每次翻的杯子数整除,于是就是先把其中一个杯子从1次变3次,总次数加2,再不行就两个杯子变3次,总次数加4,以此类推,也就是先用N/M,看能否整除,如果不能,就用(N+2)/M,还不行就用(N+4)/M,直到能够整除,而整除之后这个商,就是最终的次数,比如8个杯子每次翻3个,8/3不行,10/3不行,12/3=4可以,所以答案就是4。

2.4,N<2M,也就是每次翻的数量超过总数的一半了,这时又相对简单了,记住就行了:

2.4.1,N与M奇偶性相同,翻3次搞定

2.4.2,N为偶而M为奇,翻4次搞定

至此所有情况都已列举完毕,记住,一定要按照从前往后这个顺序判断,不能用单一方法计算。

可以尝试下1~9个杯子的不同情况,如下表

最后,附送一个思维导图,一图搞定

 

如果小朋友学过编程,也可以用编程的思想来描述这个解法,编程思想非常好的解释了这个过程,即你必须顺序执行这个程序,而不能使用中间的某一个判别条件:

题目:N个杯子,每次翻M个,最少X次翻完,求X

如果:N为奇数 且 M为偶数
        那么:X不存在,程序结束
如果:N=M的整数倍
        那么:X=N/M
如果:N=M+1
        那么:X=N
如果:N>2M
        那么:X=循环执行(N=N+2,N/M,结果为整数)
如果:N<2M
        如果:N和M奇偶性相同
                那么:X=3
        如果:N和M奇偶性不同
                那么:X=4
程序结束

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jim老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值