凸优化(一)绪论与凸集

凸优化(一)绪论与凸集

也可以前往 我的博客 查看原文

参考:

  1. Stanford《convex optimization》
  2. 中科大 凌青 凸优化
优化问题

优化问题:从一系列可行解集合中,寻找出最优的元素

优化问题的形式:

 minimize  f 0 ( x )  subject to  f i ( x ) ≤ b i \begin{array}{ll} \text{ minimize } & f_{0}(x) \\ \text { subject to } & f_{i}(x) \leq b_i \end{array}  minimize  subject to f0(x)fi(x)bi

f 0 f_0 f0是目标函数( R n → R R^n \to R RnR

优化问题在现实生活中各个领域都非常常见,深度学习中也是要使Loss最小,也是优化问题。

优化问题的分类
线性优化/非线性优化

(有时候也叫规划,和优化是一个意思)

目标函数由多个线性函数组合成,就是线性优化问题,否则就是非线性优化问题。

线性优化问题,最优解不是在顶点就是在整条边上

凸优化/非凸优化

凸优化:

 minimize  f 0 ( x )  subject to  f i ( x ) ≤ 0 , i = 1 , … , m a i T x = b i , i = 1 , … , p \begin{array}{ll} \text{ minimize } & f_{0}(x) \\ \text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\ & a_{i}^{T} x=b_{i}, \quad i=1, \ldots, p \end{array}  minimize  subject to f0(x)fi(x)0,i=1,,maiTx=bi,i=1,,p

优化问题里面,比较好求解的是凸优化问题,非凸优化问题难解决

光滑/非光滑

目标函数每个点都可微就是光滑的,否则是非光滑的

连续/离散

按照可行域连续或者离散分类

单目标/多目标

对多个目标进行优化

这门课只研究单目标连续光滑的凸优化问题

判断是否为凸问题的一个关键,就是看约束集合、目标函数是否是凸集。所以凸集是凸优化问题最基本的一个概念。

仿射集 Affine set

集合中任取两个点,形成的直线,如果整条线上的点也都在集合中,那么称该集合为仿射集
要求任意两点连成的直线在集合中,也就是说

x 1 , x 2 ∈ C , θ ∈ R → θ x 1 + ( 1 − θ ) x 2 ∈ C x_1, x_2 \in C, \theta\in R \to \theta x_1 + (1- \theta)x_2 \in C x1,x2C,θRθx1+(1θ)x2C

convex-1

仿射组合:不仅限两个点,而是多个点:
x 1 , . . . x k ∈ C , θ 1 + . . . θ k = 1 → θ 1 x 1 + . . . θ k x k ∈ C x_1,...x_k \in C , \theta_1 + ... \theta_k = 1 \to \theta_1 x_1 + ... \theta_k x_k \in C x1,...xkC,θ1+...θk=1θ1x1+...θkxkC

利用
( θ 1 + θ 2 ) ( θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ) + ( 1 − θ 1 − θ 2 ) x 3 ∈ C (\theta_1 + \theta_2)(\frac{\theta_1}{\theta_1 + \theta_2}x_1 + \frac{\theta_2}{\theta_1 + \theta_2}x_2) + (1-\theta_1 - \theta_2)x_3 \in C (θ1+θ2)(θ1+θ2θ1x1+θ1+θ2θ2x2)+(1θ1θ2)x3C即可证明

任意线性方程组 A x = b Ax = b Ax=b的解集都是仿射集,任意仿射集都可以写成线性方程组的解集

假设该线性方程组有两个解 x 1 , x 2 x_1, x_2 x1,x2,则直线上的任意一点 θ x 1 + ( 1 − θ ) x 2 \theta x_1+(1-\theta)x_2 θx1+(1θ)x2代入得 A ( θ x 1 + ( 1 − θ ) x 2 ) = b A(\theta x_1+(1-\theta)x_2) = b A(θx1+(1θ)x2)=b,说明也是该线性方程组的解

仿射包:从非仿射集合中构造一个最小的仿射集

比如两个点的集合不是仿射集,构造一个经过它们的直线,就是仿射集了,这条直线就是仿射包。三个不同直线的点,它们的最小的仿射包就是经过它们的二维平面。如果本身就是仿射集,那么仿射包就是它自己。

凸集 convex set

凸集相比于仿射集条件放松,要求任意两点连成的线段在集合中。凸集的定义为:

x 1 , x 2 ∈ C , θ ∈ [ 0 , 1 ] → θ x 1 + ( 1 − θ 2 ) x 2 ∈ C x_1, x_2 \in C, \theta\in[0,1] \to \theta x_1 + (1- \theta_2)x_2 \in C x1,x2C,θ[0,1]θx1+(1θ2)x2C

仿射集必然是凸集,可以认为是一种特殊的凸集,凸集包含的更广。

凸组合:不仅限两个点,而是多个点:
x 1 , . . . x k ∈ C , θ 1 + . . . θ k = 1 , θ i ∈ [ 0 , 1 ] → θ 1 x 1 + . . . θ k x k ∈ C x_1,...x_k \in C , \theta_1 + ... \theta_k = 1, \theta_i\in[0,1] \to \theta_1 x_1 + ... \theta_k x_k \in C x1,...xkC,θ1+...θk=1,θi[0,1]θ1x1+...θkxkC

凸包:包含集合S的最小凸集

下图2.2,只有左边的凸多边形是凸集。不过如果右图只少了角点,是凸集,少了边上或者内部的点就不是凸集了。

下图2.3是凸包,包括一组离散点的凸包,以及非凸形状的凸包。

convex-2

典型凸集
凸锥 Convex cone

锥: ∀ x ∈ C , θ ≥ 0 , θ x ∈ C \forall x \in C, \theta \geq 0, \theta x \in C xC,θ0,θxC(锥尖需要在原点)

凸锥: x 1 , x 2 ∈ C , θ 1 x 1 + θ 2 x 2 ∈ C , θ 1 > 0 , θ 2 > 0 x_1, x_2 \in C, \theta_1 x_1 + \theta_2 x_2 \in C, \theta_1 > 0, \theta_2 > 0 x1,x2C,θ1x1+θ2x2C,θ1>0,θ2>0

convex-cone-1

图形理解,任取两点 x 1 , x 2 x_1, x_2 x1,x2,如果 x 1 , x 2 , o x_1,x_2,o x1,x2,o不在一条直线上,那么在 x 1 o x 2 ⌢ \overset{\frown}{x_1 o x_2} x1ox2的扇形区域内的所有的点都在凸锥集上

过原点的直线和原点发出的射线是凸锥

凸锥组合: x 1 , . . . x k ∈ C , θ 1 x 1 + . . . θ k x k ∈ C , θ 1 > 0 , . . . θ k > 0 x_1,... x_k \in C, \theta_1 x_1 + ... \theta_k x_k \in C, \theta_1 > 0, ... \theta_k > 0 x1,...xkC,θ1x1+...θkxkC,θ1>0,...θk>0

凸锥包:和前面一样,如下图所示

convex-cone-2

对比一下前面几种组合:
仿射组合: θ 1 + . . . + θ k = 1 \theta_1 + ... + \theta_k = 1 θ1+...+θk=1
凸组合: θ 1 + . . . + θ k = 1 , θ 1 , . . . , θ k > 0 \theta_1 + ... + \theta_k = 1, \theta_1, ... , \theta_k > 0 θ1+...+θk=1,θ1,...,θk>0
凸锥组合: θ 1 , . . . , θ k ≥ 0 \theta_1, ... , \theta_k \geq 0 θ1,...,θk0

超平面 Hyperplane

{ x ∣ a T x = b } \{x|a^T x = b\} {xaTx=b}

是仿射集,也是凸集,不一定凸锥(除非过原点)

半空间 Halfspace

{ x ∣ a T x ≤ b } \{ x|a^T x \leq b \} {xaTxb}

半空间是凸集,不是仿射集,不一定凸锥(除非过原点)

下图分别为超平面和半空间:

convex-5

证明:
假设 x 1 , x 2 x_1, x_2 x1,x2在空间上:
a T x 1 ≤ b a^T x_1 \leq b aTx1b
a T x 2 ≤ b a^T x_2 \leq b aTx2b
对于 x 1 , x 2 x_1,x_2 x1,x2上的任意一点 θ x 1 + ( 1 − θ ) x 2 \theta x_1 + (1-\theta) x_2 θx1+(1θ)x2有:
a T ( θ x 1 + ( 1 − θ ) x 2 ) = θ ( a T x 1 − b ) + ( 1 − θ ) ( a T x 2 − b ) + b ≤ b a^T(\theta x_1 + (1-\theta) x_2) = \theta (a^T x_1 -b) + (1-\theta) (a^T x_2 - b) +b \leq b aT(θx1+(1θ)x2)=θ(aTx1b)+(1θ)(aTx2b)+bb,也在集合中,所以半空间是凸集

法线的反方向

空间球 Euclidean Ball

欧几里得球,就是一个空间球

B ( x c , r ) = { x ∣ ∥ x − x c ∥ 2 ≤ r } = { x ∣ ( x − x c ) T ( x − x c ) ≤ r 2 } B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}=\left\{x \mid\left(x-x_{c}\right)^{T}\left(x-x_{c}\right) \leq r^{2}\right\} B(xc,r)={xxxc2r}={x(xxc)T(xxc)r2}

证明:
假设 x 1 , x 2 x_1, x_2 x1,x2在空间上:
∣ ∣ x 1 − x c ∣ ∣ 2 ≤ r || x_1 - x_c ||_2 \leq r x1xc2r
∣ ∣ x 2 − x c ∣ ∣ 2 ≤ r || x_2 - x_c ||_2 \leq r x2xc2r
对于 x 1 , x 2 x_1,x_2 x1,x2上的任意一点$\theta x_1 + (1-\theta) x_2 , ( 其 中 ,(其中 \theta \in [0,1]$),有:
∣ ∣ θ x 1 + ( 1 − θ ) x 2 − x c ∣ ∣ r = ∣ ∣ θ ( x 1 − x c ) + ( 1 − θ ) ( x 2 − x c ) ∣ ∣ ≤ θ ∣ ∣ x 1 − x c ∣ ∣ 2 + ( 1 − θ ) ∣ ∣ x 2 − x c ∣ ∣ 2 ≤ r || \theta x_1 + (1-\theta) x_2 - x_c ||_r = || \theta (x_1 - x_c) + (1-\theta)(x_2 - x_c)||\newline \leq \theta ||x_1 - x_c||_2 + (1-\theta) ||x_2 - x_c||_2 \leq r θx1+(1θ)x2xcr=θ(x1xc)+(1θ)(x2xc)θx1xc2+(1θ)x2xc2r
这里用到了范数的三角不等式

范数性质
假设 x x x的范数是 f ( x ) f(x) f(x) f ( x ) ≥ 0 f(x)\geq 0 f(x)0,满足下面三条性质:
if  f ( x ) = 0 → x = 0 \text{if}\ f(x)=0 \to x=0 if f(x)=0x=0
k f ( x ) = ∣ k ∣ f ( x ) kf(x) = |k|f(x) kf(x)=kf(x)
f ( x + y ) ≤ f ( x ) + f ( y ) f(x+y) \leq f(x) + f(y) f(x+y)f(x)+f(y)(三角不等式)

椭球 Ellipsoids

E = { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } \mathcal{E}=\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\} E={x(xxc)TP1(xxc)1}

矩阵P是一个n*n的对称正定矩阵

(特征值,奇异值)

多面体 Polyhedra

多面体:有限个线性等式和不等式的解集
多面体是有限个半空间和超平面的交集

P = { x ∣ a j T x ≤ b j , j = 1 , … , m , c j T x = d j , j = 1 , … , p } \mathcal{P}=\left\{x \mid a_{j}^{T} x \leq b_{j}, j=1, \ldots, m, c_{j}^{T} x=d_{j}, j=1, \ldots, p\right\} P={xajTxbj,j=1,,m,cjTx=dj,j=1,,p}

范数球 Norm Ball & 范数锥 Norm Cone

范数:满足以下条件的函数 ∣ ∣ ⋅ ∣ ∣ ||\cdot||
1、 ∣ ∣ x ∣ ∣ ≥ 0 ||x||\geq 0 x0 ∣ ∣ x ∣ ∣ = 0 ||x||=0 x=0当且仅当 x = 0 x=0 x=0
2、 ∣ ∣ t x ∣ ∣ = t ∣ ∣ x ∣ ∣ ||tx|| = t||x|| tx=tx,对于任何 t ∈ R t\in R tR成立
3、 ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y|| \leq ||x|| + ||y|| x+yx+y

C = { ( x , t ) ∣ ∥ x ∥ ≤ t } ⊆ R n + 1 C=\{(x, t) \mid\|x\| \leq t\} \subseteq \mathbf{R}^{n+1} C={(x,t)xt}Rn+1

convex-6

其他的例子

n*n的对称矩阵组成的集合,是凸锥,也是凸集

n*n的半正定矩阵组成的集合,是凸集

n*n的正定矩阵组成的集合不是凸集(取值只能>=0,不属于正定了)

线性矩阵不等式的解集也是凸集

保凸运算

如果要证明是凸集可以用定义法,不过复杂情况会很难证明。
另一种方法是证明集合是多个凸集的保凸运算的简单组合,保凸运算包括以下几个:

交集 Intersection

C 1 C_1 C1, C 2 C_2 C2是凸集,其交集 C = C 1 ∩ C 2 C = C_1 \cap C_2 C=C1C2也一定是凸集。

拓展到n个也是。

仿射函数 Affine

f f f是仿射变换: R n → R m \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} RnRm

如果有 S ∈ R n S \in R^n SRn是凸集,那么 f ( S ) = { f ( x ) ∣ x ∈ S } f(S)=\{f(x) \mid x \in S\} f(S)={f(x)xS}也是凸集,用定义证明即可。
逆函数 f − 1 ( S ) = { x ∣ f ( x ) ∈ S } f^{-1}(S)=\{x \mid f(x) \in S\} f1(S)={xf(x)S}也是凸集。

透视函数 Perspective functions

透视函数 P : R n + 1 → R n P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n} P:Rn+1Rn,相当于通过变换(所有元素除以最后一个元素)将最后一个维度的元素变为1,然后去掉这个维度的一种变换。降低一个维度。

P ( X , t ) = X / t , d o m P = ( X , t ) , t > 0 P(\mathbf{X}, t) = \mathbf{X}/t, dom P = {(\mathbf{X}, t), t > 0} P(X,t)=X/t,domP=(X,t),t>0
这里t是一个标量,X是矩阵,相当于P是dom(X)+1维度的,去掉最后一个维度t,X里的每一个元素除以t。

类比于针孔相机,3维的点 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3)会通过孔映射到二维的平面 − ( x 1 / x 3 , x 2 / x 3 , 1 ) -(x_1/x_3, x_2/x_3, 1) (x1/x3,x2/x3,1)上,就是一个透视函数的过程。

任意凸集的反透视映射也是凸集

线性分段函数 Linear-fractional

一个Linear-fractional function是由perspective function和一个affine function组成的

g ( x ) = [ A c T ] x + [ b d ] g(x)=\left[\begin{array}{c}A \\ c^{T}\end{array}\right] x+\left[\begin{array}{l}b \\ d\end{array}\right] g(x)=[AcT]x+[bd]

超平面分离定理与支撑超平面
超平面分离定理

如果 C C C D D D是两个不相交的凸集,那么必然存在一个超平面 { x ∣ a T x = b } \{x|a^Tx = b\} {xaTx=b}能够分离 C C C D D D,这超平面被称为分割超平面

支撑超平面

集合C边界上的点 x 0 x_0 x0的支撑超平面: { x ∣ a T x = a T x 0 } \{x | a^Tx = a^T x_0\} {xaTx=aTx0}

其中 a ≠ 0 a \neq 0 a=0,对于所有的 x ∈ C x \in C xC满足 a T x ≤ a T x 0 a^Tx \leq a^T x_0 aTxaTx0

如果 C C C是凸的,那么C边界上的每一个点都存在一个支撑超平面。

一些例题
第一题

C ⊆ R n C \subseteq R^n CRn是一个凸集,证明对于任意 k k k的情况,满足 θ i ≥ 0 , θ 1 + . . . θ k = 1 \theta_i \geq 0, \theta_1 + ... \theta_k = 1 θi0,θ1+...θk=1的情况下,有 θ 1 x 1 + . . . + θ k x k ∈ C \theta_1 x_1 + ... + \theta_k x_k \in C θ1x1+...+θkxkC

证明:使用数学归纳法,
k = 2 k=2 k=2时,根据凸集的定义性质可知,任取 θ 1 , θ 2 \theta_1, \theta_2 θ1,θ2,满足 θ 1 + θ 2 = 1 \theta_1+\theta_2=1 θ1+θ2=1,有 θ 1 x 1 + θ 2 x 2 ∈ C \theta_1 x_1 + \theta_2 x_2 \in C θ1x1+θ2x2C

假设 k = n − 1 k=n-1 k=n1时上式成立,即满足 θ 1 + . . . + θ n − 1 = 1 \theta_1+ ... +\theta_{n-1}=1 θ1+...+θn1=1,有 θ 1 x 1 + . . . + θ n − 1 x n − 1 ∈ C \theta_1 x_1 + ... + \theta_{n-1} x_{n-1} \in C θ1x1+...+θn1xn1C

下面考虑 k = n k=n k=n的情况,构造下面的式子:

( ∑ i = 1 k − 1 θ i ) ∑ i = 1 k − 1 θ i x i ∑ i = 1 k − 1 θ i + ( 1 − ∑ i = 1 k − 1 θ i ) x i (\sum_{i=1}^{k-1} \theta_i) \frac{\sum_{i=1}^{k-1} \theta_i x_i}{\sum_{i=1}^{k-1}\theta_i} + (1-\sum_{i=1}^{k-1} \theta_i)x_i (i=1k1θi)i=1k1θii=1k1θixi+(1i=1k1θi)xi

其中 ∑ i = 1 k − 1 θ i x i ∑ i = 1 k − 1 θ i \frac{\sum_{i=1}^{k-1} \theta_i x_i}{\sum_{i=1}^{k-1}\theta_i} i=1k1θii=1k1θixi完全符合 n − 1 n-1 n1的条件,所以 ∑ i = 1 k − 1 θ i x i ∑ i = 1 k − 1 θ i ∈ C \frac{\sum_{i=1}^{k-1} \theta_i x_i}{\sum_{i=1}^{k-1}\theta_i} \in C i=1k1θii=1k1θixiC,整个式子又满足 k = 2 k=2 k=2的凸集的定义,所以有:
( ∑ i = 1 k − 1 θ i ) ∑ i = 1 k − 1 θ i x i ∑ i = 1 k − 1 θ i + ( 1 − ∑ i = 1 k − 1 θ i ) x i ∈ C (\sum_{i=1}^{k-1} \theta_i) \frac{\sum_{i=1}^{k-1} \theta_i x_i}{\sum_{i=1}^{k-1}\theta_i} + (1-\sum_{i=1}^{k-1} \theta_i)x_i \in C (i=1k1θi)i=1k1θii=1k1θixi+(1i=1k1θi)xiC

即证明了只要 k = n − 1 k=n-1 k=n1时成立,就有 k = n k=n k=n时成立,数学归纳法得证

第二题

判断下面的哪些集合是凸集
(a)平板,形如 { x ∈ R n ∣ α ⩽ a T x ⩽ β } \left\{x \in \mathbf{R}^{n} \mid \alpha \leqslant a^{T} x \leqslant \beta\right\} {xRnαaTxβ}
(b)矩形,形如 { x ∈ R n ∣ α i ⩽ x i ⩽ β i   , i = 1 , . . . , n } \left\{x \in \mathbf{R}^{n} \mid \alpha_i \leqslant x_i \leqslant \beta_i\ , i = 1, ..., n \right\} {xRnαixiβi ,i=1,...,n}
(c)楔形,形如 { x ∈ R n ∣ α 1 T x ⩽ b 1 , α 2 T x ⩽ b 2 , i = 1 , . . . , n } \left\{x \in \mathbf{R}^{n} \mid \alpha_1^T x \leqslant b_1 , \alpha_2^T x \leqslant b_2, i = 1, ..., n \right\} {xRnα1Txb1,α2Txb2,i=1,...,n}
(d)距离给定点比距离给定集合近的点构成的集合: { x ∣ ∥ x − x 0 ∥ 2 ⩽ ∥ x − y ∥ 2 , ∀ y ∈ S } \left\{x \mid\left\|x-x_{0}\right\|_{2} \leqslant\|x-y\|_{2}, \forall y \in S\right\} {xxx02xy2,yS}
(e)距离一个集合比另一个集合更近的点的集合: { x ∣ dist ⁡ ( x , S ) ⩽ dist ⁡ ( x , T ) } \{x \mid \operatorname{dist}(x, S) \leqslant \operatorname{dist}(x, T)\} {xdist(x,S)dist(x,T)}
(f)集合 { x ∣ x + S 2 ⊆ S 1 } \{x \mid x + S_2 \subseteq S_1 \} {xx+S2S1},其中 S 1 , S 2 ⊆ R n S_1, S_2 \subseteq R^n S1,S2Rn,并且 S 1 S_1 S1是凸集
(g)到 a a a 的距离与到 b b b 的距离之比不超过到某一固定分数 θ \theta θ的点的集合,即集合 { x ∣ ∥ x − a ∥ 2 ⩽ θ ∥ x − b ∥ 2 } \left\{x \mid\left\|x-a\right\|_{2} \leqslant \theta \|x-b\|_{2}\right\} {xxa2θxb2}

(a)

  • 用定义证明:

任取 x 1 , x 2 ∈ C x_1, x_2 \in C x1,x2C,有 α ⩽ a T x 1 ⩽ β , α ⩽ a T x 2 ⩽ β \alpha \leqslant a^{T} x_1 \leqslant \beta, \alpha \leqslant a^{T} x_2 \leqslant \beta αaTx1β,αaTx2β

对于 θ ∈ [ 0 , 1 ] \theta \in [0, 1] θ[0,1],对于$ (\theta x_1 + (1-\theta) x_2)$,有:
α = θ α + ( 1 − θ ) α ≤ α T ( θ x 1 + ( 1 − θ ) x 2 ) ≤ θ β + ( 1 − θ ) β = β \alpha = \theta \alpha + (1-\theta) \alpha \leq \alpha^T (\theta x_1 + (1-\theta) x_2) \leq \theta \beta + (1-\theta) \beta = \beta α=θα+(1θ)ααT(θx1+(1θ)x2)θβ+(1θ)β=β

( θ x 1 + ( 1 − θ ) x 2 ) ∈ C (\theta x_1 + (1-\theta) x_2) \in C (θx1+(1θ)x2)C,是凸集

  • 用保凸性证明:

因为平板是两个半空间的交集,半空间是凸集,交集是保凸运算,所以平板也是凸集

(b)

  • 用定义证明:

任取 x 1 , x 2 ∈ C x_1, x_2 \in C x1,x2C,有 α i ⩽ x 1 ⩽ β i , α i ⩽ x 2 ⩽ β i \alpha_i \leqslant x_1 \leqslant \beta_i, \alpha_i \leqslant x_2 \leqslant \beta_i αix1βi,αix2βi

对于 θ ∈ [ 0 , 1 ] \theta \in [0, 1] θ[0,1],对于$ (\theta x_1 + (1-\theta) x_2)$,有:
α i ≤ ( θ x 1 + ( 1 − θ ) x 2 ) ≤ β i \alpha_i \leq (\theta x_1 + (1-\theta) x_2) \leq \beta_i αi(θx1+(1θ)x2)βi

( θ x 1 + ( 1 − θ ) x 2 ) ∈ C (\theta x_1 + (1-\theta) x_2) \in C (θx1+(1θ)x2)C,是凸集

  • 用保凸性证明:

矩形是多个半空间的交集,半空间是凸集,交集是保凸运算,所以矩形也是凸集

(c)

  • 用定义证明:

任取 x 1 , x 2 ∈ C x_1, x_2 \in C x1,x2C,有 a 1 T x 1 ⩽ b 1 , a 2 T x 1 ⩽ b 2 a_1^{T} x_1 \leqslant b_1, a_2^{T} x_1 \leqslant b_2 a1Tx1b1,a2Tx1b2 a 1 T x 2 ⩽ b 1 , a 2 T x 2 ⩽ b 2 a_1^{T} x_2 \leqslant b_1, a_2^{T} x_2 \leqslant b_2 a1Tx2b1,a2Tx2b2

对于 θ ∈ [ 0 , 1 ] \theta \in [0, 1] θ[0,1],对于$ (\theta x_1 + (1-\theta) x_2)$,有:
a 1 T ( θ x 1 + ( 1 − θ ) x 2 ) ≤ θ b 1 + ( 1 − θ ) b 1 = b 1 a 2 T ( θ x 1 + ( 1 − θ ) x 2 ) ≤ θ b 2 + ( 1 − θ ) b 2 = b 2 a_1^T (\theta x_1 + (1-\theta) x_2) \leq \theta b_1 + (1-\theta) b_1 = b_1\newline a_2^T (\theta x_1 + (1-\theta) x_2) \leq \theta b_2 + (1-\theta) b_2 = b_2 a1T(θx1+(1θ)x2)θb1+(1θ)b1=b1a2T(θx1+(1θ)x2)θb2+(1θ)b2=b2

  • 用保凸性证明:

楔形是多个半空间的交集,半空间是凸集,交集是保凸运算,所以楔形也是凸集

(d)
对于固定的 y y y而言,有:
∣ ∣ x − x 0 ∣ ∣ 2 ⩽ ∣ ∣ x − y ∣ ∣ 2 ⇔ ( x − x 0 ) T ( x − x 0 ) ⩽ ( x − y ) T ( x − y ) ⇔ x T x − 2 x 0 T x + x 0 T x 0 ⩽ x T x − 2 y T x + y T y ⇔ 2 ( y T − x 0 T ) x ⩽ y T y − x 0 T x 0 \begin{array}{ll} &||x-x_{0}||_{2} \leqslant ||x-y||_{2}\\ \Leftrightarrow & (x-x_{0})^T(x-x_{0}) \leqslant (x-y)^T (x-y)\\ \Leftrightarrow & x^T x - 2x_0^T x + x_0^T x_0 \leqslant x^T x - 2y^T x + y^T y\\ \Leftrightarrow & 2(y^T - x_0^T)x \leqslant y^T y - x_0^T x_0 \\ \end{array} xx02xy2(xx0)T(xx0)(xy)T(xy)xTx2x0Tx+x0Tx0xTx2yTx+yTy2(yTx0T)xyTyx0Tx0

说明该集合是多个半空间的交集,交集为保凸运算,所以该集合为凸集

(e)
不是凸集,可以举反例,比如 S = { ( x , y ) ∣ x 2 + y 2 = 1 } S = \{(x, y)|x^2 + y^2 = 1\} S={(x,y)x2+y2=1} T = { ( 0 , 0 ) } T = \{(0, 0)\} T={(0,0)},那么这个集合就是 R 2 R^2 R2平面挖空一个圆心在原点,半径为 1 2 \frac{1}{2} 21的孔,比如集合上取 ( 0 , 1 ) , ( 0 , − 1 ) (0, 1),(0, -1) (0,1),(0,1)两点,取 θ = 0.5 \theta=0.5 θ=0.5 ( 0 , 0 ) (0,0) (0,0)不在这个集合内,很显然它不是凸集。

(f)
y ∈ S 2 y \in S_2 yS2,集合相当于是多个凸集 ( S 1 − y ) (S_1 - y) (S1y)的交集,交集为保凸运算,所以也是凸集。

(g)
是凸集
∣ ∣ x − a ∣ ∣ 2 ⩽ θ ∣ ∣ x − b ∣ ∣ 2 ⇔ ( 1 − θ 2 ) x T x − 2 ( a − θ 2 b ) T x + ( a T a − θ 2 b T b ) ≤ 0 \begin{array}{ll} & ||x-a||_{2} \leqslant \theta||x-b||_{2}\\ \Leftrightarrow & (1-\theta^2)x^Tx - 2 (a-\theta^2b)^Tx + (a^Ta - \theta^2b^Tb) \leq 0 \end{array} xa2θxb2(1θ2)xTx2(aθ2b)Tx+(aTaθ2bTb)0

如果 θ ≤ 1 \theta \leq 1 θ1,集合是一个球
如果 θ = 1 \theta = 1 θ=1,集合是半空间
都是凸集

第三题

一些概率分布集合,令 x x x为服从分布 prob ( x = a i ) = p 1 , i = 1 , . . . , n \textbf{prob}(x=a_i) = p_1, i = 1, ... ,n prob(x=ai)=p1,i=1,...,n 的实数随机变量, p ∈ R n p \in R^n pRn在一个标准概率单纯形 P = { p ∣ 1 T p = 1 , p ⪰ 0 } P=\left\{p \mid \mathbf{1}^{T} p=1, p \succeq 0\right\} P={p1Tp=1,p0},下面哪些条件在 p p p中是凸的?
(a) α ⩽ E f ( x ) ⩽ β \alpha \leqslant \textbf{E} f(x) \leqslant \beta αEf(x)β
(b) prob ( x > α ) ⩽ β \textbf{prob}(x>\alpha) \leqslant \beta prob(x>α)β
(c) E ∣ x 3 ∣ ⩽ α E ∣ x ∣ \textbf{E} |x^3| \leqslant \alpha \textbf{E} |x| Ex3αEx
(d) E x 2 ⩽ α \textbf{E} x^2 \leqslant \alpha Ex2α
(e) E x 2 ⩾ α \textbf{E} x^2 \geqslant \alpha Ex2α
(f) var ( x ) ⩽ α \textbf{var} (x) \leqslant \alpha var(x)α
(g) var ( x ) ⩾ α \textbf{var} (x) \geqslant \alpha var(x)α
(h) quartile ( x ) ⩾ α \textbf{quartile} (x) \geqslant \alpha quartile(x)α quartile ( x ) = inf { β ∣ prob ( x ⩽ β ) ⩾ 0.25 } \textbf{quartile} (x) = \text{inf} \{ \beta | \textbf{prob}(x\leqslant \beta) \geqslant 0.25\} quartile(x)=inf{βprob(xβ)0.25}
(i) quartile ( x ) ⩽ α \textbf{quartile} (x) \leqslant \alpha quartile(x)α

p p p的约束: p i ≥ 0 p_i \geq 0 pi0是n个半空间,约束 ∑ i = 1 n = 1 \sum_{i=1}^n = 1 i=1n=1是超平面,也就是说 p p p是一个多面体,本身为凸集。

(a)
α ≤ ∑ i = 1 n p i f ( a i ) ≤ β \alpha \leq \sum_{i=1}^n p_i f(a_i) \leq \beta αi=1npif(ai)β
增加线性不等式约束,仍为凸集

(b)
prob ( x ≥ α ) = ∑ i , a i ≥ α p i ≤ β \textbf{prob}(x\geq \alpha) = \sum_{i, a_i \geq \alpha}p_i \leq \beta prob(xα)=i,aiαpiβ
增加线性不等式约束,仍为凸集

(c)
E ∣ x 3 ∣ ≤ α E ∣ x ∣ → ∑ i = 1 n p i ( ∣ a i 3 ∣ − α ∣ a i ∣ ) ≤ 0 \mathbf{E}\left|x^{3}\right| \leq \alpha \mathbf{E}|x| \to \sum_{i=1}^{n} p_{i}\left(\left|a_{i}^{3}\right|-\alpha\left|a_{i}\right|\right) \leq 0 Ex3αExi=1npi(ai3αai)0
增加线性不等式约束,仍为凸集

(d)
∑ i = 1 n p i a i 2 ≤ α \sum_{i=1}^{n} p_{i} a_{i}^{2} \leq \alpha i=1npiai2α
增加线性不等式约束,仍为凸集

(e)
∑ i = 1 n p i a i 2 ≥ α \sum_{i=1}^{n} p_{i} a_{i}^{2} \geq \alpha i=1npiai2α
增加线性不等式约束,仍为凸集

(f)
var ( x ) = E x 2 − ( E x ) 2 = ∑ i = 1 n p i a i 2 − ( ∑ i = 1 n p i a i ) 2 ≤ α \textbf{var}(x)=\mathbf{E} x^{2}-(\mathbf{E} x)^{2}=\sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2} \leq \alpha var(x)=Ex2(Ex)2=i=1npiai2(i=1npiai)2α
不是凸集。举反例,比如 a 1 = 0 , a 2 = 1 , α = 0.2 a_1 = 0, a_2 = 1, \alpha = 0.2 a1=0,a2=1,α=0.2,两个点 p 1 = ( 0 , 1 ) , p 2 = ( 1 , 0 ) p_1 = (0, 1), p_2 = (1,0) p1=(0,1),p2=(1,0),有 var ( x ) ≤ α \textbf{var}(x) \leq \alpha var(x)α,但是中间的点 ( 1 2 , 1 2 ) (\frac{1}{2}, \frac{1}{2}) (21,21)明显不满足。

(g)
var ( x ) = E x 2 − ( E x ) 2 = ∑ i = 1 n p i a i 2 − ( ∑ i = 1 n p i a i ) 2 = b T p + p T A p ≥ α \textbf{var}(x)=\mathbf{E} x^{2}-(\mathbf{E} x)^{2}=\sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2} = b^T p + p^T A p \geq \alpha var(x)=Ex2(Ex)2=i=1npiai2(i=1npiai)2=bTp+pTApα
因为 A = a a T A = a a^T A=aaT是半正定的,所以是凸集

(h)
prob ( x ≤ a k ) = ∑ i = 1 k p i < 0.25 \textbf{prob}\left(x \leq a_{k}\right)=\sum_{i=1}^{k} p_{i}<0.25 prob(xak)=i=1kpi<0.25
是一个半空间,是凸集。

(i)
∑ i = k + 1 n p i ≥ 0.25 \sum_{i=k+1}^{n} p_{i} \geq 0.25 i=k+1npi0.25
是一个半空间,是凸集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值