JAVA学习- 浮点型精度问题(float double)

问题描述

简要描述

Java中的浮点型 Float、Double;

程序运行中都将10进制的数据转换为2进行运算,而浮点型小数点后的数字使用2进制表示时将是无限的(下述将解释),故需要四舍五入保留有效数字,从而导致精度问题。

示例

public class FloatTest {
    public static void main(String[] args) {
        //浮点数运算
        float i = 0.3f;
        float j = 0.2f;
        System.out.println(i*j);//0.060000002

        //数字20014999使用 float 或doble存储
        float f = 20014999;
        double d = f;
        double d2 = 20014999;
        System.out.println("f=" + f);//f=2.0015E7
        System.out.println("d=" + d);//d=2.0015E7
        System.out.println("d2=" + d2);//d2=2.0014999E7
    }
}

问题原因

浮点型使用二进制表示

十进制整数如何转化为二进制数

           算法很简单。举个例子,11表示成二进制数:

                      11/2=5 余   1

                       5/2=2   余   1

                       2/2=1   余   0

                       1/2=0   余   1

                          0结束         11二进制表示为(从下往上):1011

          这里提一点:只要遇到除以后的结果为0了就结束了,大家想一想,所有的整数除以2是不是一定能够最终得到0。换句话说,所有的整数转变为二进制数的算法会不会无限循环下去呢?绝对不会,整数永远可以用二进制精确表示 ,但小数就不一定了。

十进制小数如何转化为二进制数

           算法是乘以2直到没有了小数为止。举个例子,0.9表示成二进制数

                     0.9*2=1.8   取整数部分 1

                     0.8(1.8的小数部分)*2=1.6    取整数部分 1

                     0.6*2=1.2   取整数部分 1

                     0.2*2=0.4   取整数部分 0

                     0.4*2=0.8   取整数部分 0

                     0.8*2=1.6 取整数部分 1

                     0.6*2=1.2   取整数部分 0

                              .........      0.9二进制表示为(从上往下): 1100100100100......

           注意:上面的计算过程循环了,也就是说*2永远不可能消灭小数部分,这样算法将无限下去。很显然,小数的二进制表示有时是不可能精确的 。其实道理很简单,十进制系统中能不能准确表示出1/3呢?同样二进制系统也无法准确表示1/10。这也就解释了为什么浮点型减法出现了"减不尽"的精度丢失问题。

 

Float型在内存中的存储

Float内存中的数据结构

众所周知、 Java 的float型在内存中占4个字节。float的32个二进制位结构如下:

float内存中结构
 描述
实数符号位31符号位,1表示正,0表示负
指数符号位30小数点移动使数值有一位有效数字,1左移,0右移
指数位29----23

小数点移动使数值有一位有效数字,移动的位置存储

左移n减去1后化为二进制左边加“0”补足七位

右移n化为二进制后在左边加“0”补足七位,再取反

有效数位22----0小数点后有效数值二级制保存

将一个float型转化为内存存储格式的步骤为:

     (1)先将这个实数的绝对值化为二进制格式,注意实数的整数部分和小数部分的二进制方法在上面已经探讨过了。
     (2)将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。
     (3)从小数点右边第一位开始数出二十三位数字放入第22到第0位。
     (4)如果实数是正的,则在第31位放入“0”,否则放入“1”。
     (5)如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。
     (6)如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。

 举例说明: 11.9的内存存储格式

       (1) 将11.9化为二进制后大约是" 1011. 1110011001100110011001100..."。

       (2) 将小数点左移三位到第一个有效位右侧: "1. 011 11100110011001100110 "。 保证有效位数24位,右侧多余的截取(误差在这里产生了 )。

       (3) 这已经有了二十四位有效数字,将最左边一位“1”去掉,得到“ 011 11100110011001100110 ”共23bit。将它放入float存储结构的第22到第0位。

       (4) 因为11.9是正数,因此在第31位实数符号位放入“0”。

       (5) 由于我们把小数点左移,因此在第30位指数符号位放入“1”。

       (6) 因为我们是把小数点左移3位,因此将3减去1得2,化为二进制,并补足7位得到0000010,放入第29到第23位。

           最后表示11.9为: 0 1 0000010 011 11100110011001100110

再举一个例子:0.2356的内存存储格式
      (1)将0.2356化为二进制后大约是0.00111100010100000100100000。
      (2)将小数点右移三位得到1.11100010100000100100000。
      (3)从小数点右边数出二十三位有效数字,即11100010100000100100000放入第22到第0位。
      (4)由于0.2356是正的,所以在第31位放入“0”。
      (5)由于我们把小数点右移了,所以在第30位放入“0”。
      (6)因为小数点被右移了3位,所以将3化为二进制,在左边补“0”补足七位,得到0000011,各位取反,得到1111100,放入第29到第23位。
         最后表示0.2356为:0 0 1111100 11100010100000100100000

 

将一个内存存储的float二进制格式转化为十进制的步骤:

     (1)将第22位到第0位的二进制数写出来,在最左边补一位“1”,得到二十四位有效数字。将小数点点在最左边那个“1”的右边。
     (2)取出第29到第23位所表示的值n。当30位是“0”时将n各位求反。当30位是“1”时将n增1。
     (3)将小数点左移n位(当30位是“0”时)或右移n位(当30位是“1”时),得到一个二进制表示的实数。
     (4)将这个二进制实数化为十进制,并根据第31位是“0”还是“1”加上正号或负号即可。

浮点型的减法运算

浮点加减运算过程比定点运算过程复杂。完成浮点加减运算的操作过程大体分为四步:
    (1) 0操作数的检查; 

如果判断两个需要加减的浮点数有一个为0,即可得知运算结果而没有必要再进行有序的一些列操作。

    (2) 比较阶码(指数位)大小并完成对阶;

        两浮点数进行加减,首先要看两数的 指数位 是否相同,即小数点位置是否对齐。若两数 指数位 相同,表示小数点是对齐的,就可以进行尾数的加减运算。反之,若两数阶码不同,表示小数点位置没有对齐,此时必须使两数的阶码相同,这个过程叫做对阶 。

        如何对 阶(假设两浮点数的指数位为 Ex 和 Ey ):

        通过尾数的移位以改变 Ex 或 Ey ,使之相等。 由于浮点表示的数多是规格化的,尾数左移会引起最高有位的丢失,造成很大误差;而尾数右移虽引起最低有效位的丢失,但造成的误差较小,因此,对阶操作规定使尾数右移,尾数右移后使阶码作相应增加,其数值保持不变。很显然,一个增加后的阶码与另一个相等,所增加的阶码一定是小阶。因此在对阶时,总是使小阶向大阶看齐 ,即小阶的尾数向右移位 ( 相当于小数点左移 ) ,每右移一位,其阶码加 1 ,直到两数的阶码相等为止,右移的位数等于阶差 △ E 。
    (3) 尾数(有效数位)进行加或减运算;

               对阶完毕后就可 有效数位 求和。 不论是加法运算还是减法运算,都按加法进行操作,其方法与定点加减运算完全一样。
    (4) 结果规格化并进行舍入处理。

例如:计算12.0f-11.9f

     12.0f 的内存存储格式为: 0 1 0000010 10000000000000000000000    

     11.9f 的内存存储格式为:   0 1 0000010 011 11100110011001100110

     可见两数的指数位完全相同,只要对有效数位进行减法即可。

     12.0f-11.9f   结果:         0 1 0000010 00000011001100110011010

     将结果还原为十进制为: 0.000 11001100110011010= 0.10000038

Float和Double使用不当

public class FloatTest {
    public static void main(String[] args) {
       //数字20014999使用 float 或doble存储
        float f = 20014999;
        double d = f;
        double d2 = 20014999;
        System.out.println("f=" + f);//f=2.0015E7
        System.out.println("d=" + d);//d=2.0015E7
        System.out.println("d2=" + d2);//d2=2.0014999E7
    }
}

从输出结果可以看出double 可以正确的表示20014999 ,而float 没有办法表示20014999 ,得到的只是一个近似值。这样的结果很让人讶异。20014999 这么小的数字在float下没办法表示。于是带着这个问题,做了一次关于float和double学习,做个简单分享,希望有助于大家对java 浮点数的理解。

关于 java 的 float 和 double

Java 语言支持两种基本的浮点类型: float 和 double 。java 的浮点类型都依据 IEEE 754 标准。IEEE 754 定义了32 位和 64 位双精度两种浮点二进制小数标准。

IEEE 754 用科学记数法以底数为 2 的小数来表示浮点数。32 位浮点数用 1 位表示数字的符号,用 8 位来表示指数,用 23 位来表示尾数,即小数部分。作为有符号整数的指数可以有正负之分。小数部分用二进制(底数 2 )小数来表示。对于64 位双精度浮点数,用 1 位表示数字的符号,用 11 位表示指数,52 位表示尾数。如下两个图来表示:

     float(32位):

double(64位): 

都是分为三个部分:

(1) 一个单独的符号位s 直接编码符号s 。

(2)k 位的幂指数E ,移码表示 。

(3)n 位的小数,原码表示 。

20014999 为什么用 float 没有办法正确表示?

结合float和double的表示方法,通过分析 20014999 的二进制表示就可以知道答案了。

以下程序可以得出 20014999 在 double 和 float 下的二进制表示方式:

public class FloatTest {
    public static void main(String[] args) {
        double d = 8;
        long l = Double.doubleToLongBits(d);
        System.out.println(Long.toBinaryString(l));//结果:100000000100000000000000000000000000000000000000000000000000000
        float f = 8;
        int i = Float.floatToIntBits(f);
        System.out.println(Integer.toBinaryString(i));//结果:100000000100000000000000000000000000000000000000000000000000000
    }
}

对于输出结果分析如下:

对于 double 的二进制左边补上符号位 0 刚好可以得到 64 位的二进制数,根据double的表示法:

           0 10000010111 0011000101100111100101110000000000000000000000000000

对于 float 左边补上符号位 0 刚好可以得到 32 位的二进制数。 根据float的表示法 :

           0 10010111 00110001011001111001100

1.绿色部分是符号位,红色部分是幂指数,蓝色部分是尾数;

2.对比可以得出:符号位都是 0 ,幂指数为移码表示,两者刚好也相等,唯一不同的是尾数;

double 的尾数为: 001100010110011110010111 0000000000000000000000000000 省略后面的零,至少需要24位才能正确表示;

float 下面尾数为: 00110001011001111001100 ,共 23 位。

为什么不一样了?

原因很明显,因为 float尾数 最多只能表示 23 位,所以 24 位的 001100010110011110010111 在 float 下面经过四舍五入变成了 23 位的 00110001011001111001100 ,所以 20014999 在 float 下面变成了 20015000 。

也就是说 20014999 虽然是在float的表示范围之内,但 在 IEEE 754 的 float 表示法精度长度没有办法表示出 20014999 ,而只能通过四舍五入得到一个近似值。 

解决问题

浮点数在实际应用的过程中有两种解决方案:

一. 转换为BigDecimal

将Double, Float在计算的时候先转换成String然后传入BigDecimal 然后再进行计算这样可以保证不会有进度问题。

BigDecimal的实现原理:当将Double, Float存入BigDecimal的时候,Java是用2进制保存的,所以会有误差。这时把Double, Float转成String或 用BigDecimal.valueOf(Double)(只用于double类型) 将数据放入BigDecimal后,再用BigDecimal计算。

BigDecimal的四舍五入

BigDecimal b = new BigDecimal(Double.toString(double类型));
b.divide(BigDecimal.ONE, scale, BigDecimal.ROUND_HALF_UP);

上述可以完成四舍五入,如果用这个函数BigDecimal.round(MathContext mc) 不能完成通常意味上的四舍五入,因为:一般情况下,当准确结果(在除法中,可能有无限多位)比返回的数值具有更多位数时,舍入模式和精度设置确定操作如何返回具有有限位数的结果。 首先,MathContext 的 precision 设置指定要返回的总位数;这确定了结果的精度。位数计数从准确结果的最左边的非零数字开始。舍入模式确定丢弃的尾部位数如何影响返回的结果。

将 double 转换为 BigDecimal,后者是 double 的二进制浮点值准确的十进制表示形式。返回的 BigDecimal 的标度是使 (10scale × val) 为整数的最小值。
      1. 此构造方法的结果有一定的不可预知性。有人可能认为在 Java 中写入 new BigDecimal(0.1) 所创建的 BigDecimal 正好等于 0.1(非标度值 1,其标度为 1),但是它实际上等于 0.1000000000000000055511151231257827021181583404541015625。这是因为 0.1 无法准确地表示为 double(或者说对于该情况,不能表示为任何有限长度的二进制小数)。这样,传入 到构造方法的值不会正好等于 0.1(虽然表面上等于该值)。
      2. 另一方面,String 构造方法是完全可预知的:写入 new BigDecimal("0.1") 将创建一个 BigDecimal,它正好 等于预期的 0.1。因此,比较而言,通常建议优先使用 String 构造方法

结论

当 double 必须用作 BigDecimal 的源时,先使用 Double.toString(double) 方法,然后使用 BigDecimal(String) 构造方法;

将 double 转换为 String,要获取该结果,请使用 static valueOf(double) 方法。

BigDecimal bd = new BigDecimal("39.555");
System.out.println(bd.doubleValue());//39.555
BigDecimal bd1 = bd.setScale(2, BigDecimal.ROUND_HALF_EVEN);
System.out.println(bd1.doubleValue());//39.56


二.  最后四舍五入

在计算精度不是要求很高的情况下,可以对最后的结果进行四舍五入,已达到所要的精度,这样结果会正确,但这种方法只实用于对精度要求不高的情况。

 

参考文献:https://www.cnblogs.com/yewsky/articles/1864934.html

                  https://www.it610.com/article/953129.htm

 

上述掺杂个人理解,如有不当 欢迎一起沟通!!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值