文章目录
LeetCode 59:螺旋矩阵
class Solution {
public int[][] generateMatrix(int n) {
int l = 0, r = n - 1, t = 0, b = n - 1;
int[][] mat = new int[n][n];
int num = 1, tar = n * n;
while(num <= tar){
for(int i = l; i <= r; i++) mat[t][i] = num++; // left to right.
t++;
for(int i = t; i <= b; i++) mat[i][r] = num++; // top to bottom.
r--;
for(int i = r; i >= l; i--) mat[b][i] = num++; // right to left.
b--;
for(int i = b; i >= t; i--) mat[i][l] = num++; // bottom to top.
l++;
}
return mat;
}
}
1.转圈打印矩阵
给定一个整型矩阵matrix,请按照转圈的方式打印它。 例如:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
打印结果为:1,2,3,4,8,12,16,15,14,13,9, 5,6,7,11, 10
【要求】 额外空间复杂度为O(1)。
思路;始终确定两个点。没有打印框中的左上角的点和右下角的点。然后直到这两个点重合的时候,那么这个矩阵就打印完成了。
public class quanPrint {
//其中aR,aC:代表左上角的行和列。bR和bC:代表的是右下角的行和列。
public static void spiralOrderPrint(int[][] matrix){
if(matrix==null||matrix.length==0||matrix.length==1&&matrix[0].length==0){
throw new RuntimeException("矩阵为空");
}
int aR=0;
int aC=0;
int bR=matrix.length-1;
int bC=matrix[0].length-1;
while (aR<bR){
printedge(matrix,aR++,aC++,bR--,bC--);
}
}
public static void printedge(int[][] m,int aR,int aC,int bR,int bC){
if (aR==bR){
for (int i=aC;i<=bC;i++){
System.out.printf(m[aR][i]+" ");
}
}
else if (aC==bC){
for (int i=aR;i<=bR;i++){
System.out.print(m[i][aC]+" ");
}
}else{
int curC=aC;
int curR=aR;
while(curC!=bC){
System.out.print(m[aR][curC]+" ");
curC++;
}
while(curR!=bR){
System.out.print(m[curR][bC]+" ");
curR++;
}
while(curC!=aC){
System.out.print(m[bR][curC]+" ");
curC--;
}
while (curR!=aR){
System.out.print(m[curR][aC]+" ");
curR--;
}
}
}
public static void main(String[] args) {
int[][] m={{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16}};
spiralOrderPrint(m);
}
}
2:旋转90度打印正方形矩阵
给定一个整型正方形矩阵matrix,请把该矩阵调整成 顺时针旋转90度的样子。 【要求】 额外空间复杂度为O(1)。
下图的错误:应将打印修改成 -----旋转
结果如下:
思路:因为我们要旋转打印,所以首先将原数组中相应的位置进行交换,成最后的样子的数组,然后在依次打印该数组。
注意:这种交换位置的操作,始终都是先降低一个位置给temp,然后倒序来赋值。这样就能实现交换的操作。
注意:旋转的几个点的确定:
1.首先确定最初的四个点的位置
第一个[aR][aC]
第二个m[bR][aC]
第三个m[bR][bC]
第四个m[aR][bC]
2.然后在上面的基础上在进行变化。
public class e09rotate {
public static void rotate(int[][] matrix){
int aR=0;
int aC=0;
int bR=matrix.length-1;
int bC=matrix[0].length-1;
while(aR<bR){
rotateEdge(matrix,aR++,aC++,bR--,bC--);
}
printMatrix(matrix);
}
//依次交换位置。到最终需要实现的数组。
public static void rotateEdge(int[][] m,int aR,int aC,int bR,int bC){
int times=bC-aC; //需要旋转的次数。
int tmp=0;
for (int i=0;i<times;i++){
tmp=m[aR][aC+i]; //后者:4个点中的第一个点
m[aR][aC+i]=m[bR-i][aC]; //后者:4个点中的最后一个点。
m[bR-i][aC]=m[bR][bC-i]; //后者:4个点的第三个点
m[bR][bC-i]=m[aR+i][bC]; //后者:4个点的第2个点。
m[aR+i][bC]=tmp;
}
}
public static void printMatrix(int[][] m){
for (int i=0;i<m.length;i++){
for (int j=0;j<m[0].length;j++){
System.out.print(m[i][j]+" ");
}
System.out.println();
}
}
public static void main(String[] args) {
int[][] m={{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16}};
rotate(m);
}
}
3.z字形(之字形 )打印矩阵
思路:每次的打印都以A和B的位置为参考,但是每次打印:(1)如果是从上往下打印,以a为起点。(2)如果是从下往上打印,以b为起点。
public class ZPrint {
public static void printMatrixZigZag(int[][] matrix){
int aR=0;
int aC=0;
int bR=0;
int bC=0;
int EndR=matrix.length-1;
int EndC=matrix[0].length-1;
boolean fromUp=false;
while(aR!=EndR+1){ //a来到最后一行,因为a和b是同时到达最后一行的。
printLevel(matrix,aR,aC,bR,bC,fromUp);
aR= aC==EndC?aR+1:aR; //只有a的列数来到最后一列,a的行数才增加
aC= aC==EndC?aC:aC+1;
bC= bR==EndR?bC+1:bC;
bR= bR==EndR?bR:bR+1; //上面的四行,就是a和b分别移动到下一个位置。
fromUp=!fromUp;
}
}
public static void printLevel(int[][] m,int aR,int aC,int bR,int bC,boolean fromUp){
if(aR==0&&bR==0){
System.out.print(m[aR][aC]+" ");
return;
}
if (fromUp){
while (aR<=bR){ //等价于while(ar<=br)
System.out.print(m[aR++][aC--]+" "); //从上往下打印,以a为起点
}
}else{
while(bR>=aR){ //等价于while(br>=ar )
System.out.print(m[bR--][bC++]+" "); //从下往上打印,以b为起点。
}
}
}
public static void main(String[] args) {
int[][] matrix = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 } };
printMatrixZigZag(matrix);
}
}
LeetCode .Z字形变化
class Solution {
public String convert(String s, int numRows) {
if (numRows == 1) return s; //只有一行直接返回
boolean isDown =false;
int currRow=0;
List<StringBuilder> rows = new ArrayList<StringBuilder>();
for (int i = 0; i < Math.min(numRows, s.length()); i++){
rows.add(new StringBuilder());
}
for(int i =0;i<s.length();i++){
rows.get(currRow).append(s.charAt(i));
if(currRow==0||currRow==numRows-1){
isDown=!isDown;
}
currRow+=isDown?1:-1;
}
StringBuilder res = new StringBuilder();
for(StringBuilder row:rows){
res.append(row);
}
return res.toString();
}
}
4.在行列都排好序的矩阵中找数
思路:从右上角(或者从左小角)出发,如果当前值比k大,就往左走,比k小,往下走。
public class e11FindNumInSortedMatrix {
public static boolean isContains(int[][] matrix,int K){
int row=0;
int col=matrix[0].length-1;
while(row<matrix.length&&col>=0){
if(matrix[row][col]==K){
return true;
}else if (matrix[row][col]>K){
col--;
}else{
row++;
}
}
return false;
}
public static void main(String[] args) {
int[][] matrix = new int[][] { { 0, 1, 2, 3, 4, 5, 6 },// 0
{ 10, 12, 13, 15, 16, 17, 18 },// 1
{ 23, 24, 25, 26, 27, 28, 29 },// 2
{ 44, 45, 46, 47, 48, 49, 50 },// 3
{ 65, 66, 67, 68, 69, 70, 71 },// 4
{ 96, 97, 98, 99, 100, 111, 122 },// 5
{ 166, 176, 186, 187, 190, 195, 200 },// 6
{ 233, 243, 321, 341, 356, 370, 380 } // 7
};
int K = 234;
System.out.println(isContains(matrix, K));
}
}
5.打印两个链表的公共部分
给定两个有序链表的头指针 head1 和 head2 ,打印两个链表的公共部分
public class e11PrintCommonPart {
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
public static void printCommonPart(Node head1, Node head2) {
while (head1 != null && head2 != null) {
if (head1.value < head2.value) {
head1 = head1.next;
} else if (head1.value > head2.value) {
head2 = head2.next;
} else {
System.out.print(head1.value+" ");
head1 = head1.next;
head2 = head2.next;
}
}
System.out.println();
}
public static void printLinkedList(Node head){
System.out.print("LinkedList: ");
while (head!=null){
System.out.print(head.value+" ");
head=head.next;
}
System.out.println();
}
public static void main(String[] args) {
Node node1 = new Node(2);
node1.next = new Node(3);
node1.next.next = new Node(5);
node1.next.next.next = new Node(6);
Node node2 = new Node(1);
node2.next = new Node(2);
node2.next.next = new Node(5);
node2.next.next.next = new Node(7);
node2.next.next.next.next = new Node(8);
printLinkedList(node1);
printLinkedList(node2);
printCommonPart(node1, node2);
}
}
6.判断链表是否是回文结构。
思路:使用栈,先将链表压入栈中,然后从栈中弹出来,然后与原链表依次比较。
import java.util.Stack;
public class e12IsPalindromeList {
// need n extra space
public static boolean isPalindrome1(Node head) {
Node cur=head;
Stack<Node> s=new Stack<>();
while(cur!=null){
s.push(cur);
cur=cur.next;
}
while(head!=null){
if (head.value!=s.pop().value){
return false;
}
head=head.next;
}
return true;
}
方法2:先找中点,然后将中点之后的链表全部压入到栈中,然后将栈弹出,与前面的链表进行比较。
注意:这里不分奇数和偶数,如果是奇数中间的那个节点不参与比较。
class Solution {
public boolean isPalindrome(ListNode head) {
if(head==null||head.next ==null){
return true;
}
ListNode slow =head,fast = head.next;
Stack<ListNode> stack = new Stack<ListNode>();
while(fast!=null&& fast.next!=null){
slow = slow.next;
fast = fast.next.next;
}
ListNode cur = slow.next;
while(cur!=null){
stack.push(cur);
cur = cur.next;
}
while(!stack.isEmpty()){
if(stack.pop().val!= head.val){
return false;
}
head = head.next;
}
return true;
}
}
7.将单向链表按某值划分成左边小、中间相等、右边大的形式
【题目】 给定一个单向链表的头节点head,节点的值类型是整型,再给定一个整数pivot。实现一个调整链表的函数,将链表调整为左部分都是值小于 pivot的节点,中间部分都是值等于pivot的节点,右部分都是值大于 pivot的节点。除这个要求外,对调整后的节点顺序没有更多的要求。 例如:链表9->0->4->5->1,pivot=3
。 调整后链表可以是1->0->4->9->5
,也可以是0->1->9->5->4
。总之,满 足左部分都是小于3的节点,中间部分都是等于3的节点(本例中这个部分为空),右部分都是大于3的节点即可。对某部分内部的节点顺序不做要求。
注意:在笔试中可使用方案1,面试中可使用方案2
思路:方案1:将链表全部压入到数组中,然后使用荷兰国旗问题去解决。(但是这种快排的方式不能解决稳定性。)
public static Node listPartition1(Node head, int pivot) {
if (head == null) {
return head;
}
//变成数组
Node cur = head;
int i = 0;
while (cur != null) {
i++;
cur = cur.next;
}
Node[] nodeArr = new Node[i];
i = 0;
cur = head;
for (i = 0; i != nodeArr.length; i++) {
nodeArr[i] = cur;
cur = cur.next;
}
//arrPartition数组Partition
arrPartition(nodeArr, pivot);
//变成链表
for (i = 1; i != nodeArr.length; i++) {
nodeArr[i - 1].next = nodeArr[i];
}
nodeArr[i - 1].next = null;
return nodeArr[0];//返回链表的head
}
public static void arrPartition(Node[] nodeArr, int pivot) {
int small = -1;
int big = nodeArr.length;
int index = 0;
while (index != big) {
if (nodeArr[index].value < pivot) {//如果小于p,
swap(nodeArr, ++small, index++);//首先交换small和index的位置,然后各自+1,表示
} else if (nodeArr[index].value == pivot) {
index++;
} else {
swap(nodeArr, --big, index);
}
}
}
public static void swap(Node[] nodeArr, int a, int b) {
Node tmp = nodeArr[a];
nodeArr[a] = nodeArr[b];
nodeArr[b] = tmp;
}
方案2:
注意:遵守一个原则,先连接上,然后在根据条件进行截取。
在取链表上的结点的时候,
1.先取出next,保存: Node next=head.next;
2.然后在将head后面的值断开: head.next = null;
3.最后在进行移位:head = next;
public class NO4_7 {
public static Node listPartition1(Node head,int pivot){
Node sH=null; //small head
Node sT=null; //small tail
Node eH=null; //equal head
Node eT=null; //equal tail
Node bH=null; //big head
Node bT=null; //big tail
while(head!=null){
Node next=head.next;
head.next=null;
if(head.value<pivot){
if (sH==null){
sH=head;
sT=head;
}else{
sT.next=head;
sT=head;
}
}else if (head.value==pivot){
if (eH==null){
eH=head;
eT=head;
}else{
eT.next=head;
eT=head;
}
}else{
if (bH==null){
bH=head;
bT=head;
}else{
bT.next=head;
bT=head;
}
}
head=next;
}
//small and equal reconnect
if(sT!=null){
if(eT!=null){
sT.next=eH;
eT.next =bH;
}else{
sT.next=bH;
}
}
return sH!=null?sH:eH!=null?eH:bH;
}
public static void printLinkedList(Node head){
System.out.println("Linked LIst: ");
while(head!=null){
System.out.print(head.value+" ");
head=head.next;
}
System.out.println();
}
public static void main(String[] args) {
Node head1 = new Node(7);
head1.next = new Node(9);
head1.next.next = new Node(1);
head1.next.next.next = new Node(8);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(2);
head1.next.next.next.next.next.next = new Node(5);
printLinkedList(head1);
// head1 = listPartition1(head1, 4);
head1 = listPartition1(head1, 5);
printLinkedList(head1);
}
public static class Node{
int value;
Node next;
public Node(int value){
this.value = value;
}
}
}
8.复制含有随机指针节点的链表
思路:借助HashMap的特性,定义一个HashMap<Node,Node> map对象,key和value都是value类型 ,key来存旧的链表,value来存新的链表。最后利用老节点和新节点的对应关系来实现一个拷贝新的链表。
public static Node copyListWithRand1(Node head){
HashMap<Node, Node> map = new HashMap<Node, Node>();
Node curr =head;
while(curr!=null){
map.put(curr,new Node(curr.getValue()));
curr=curr.next;
}
Node curr =head;
while(curr!=null){
map.get(curr).next = map.get(curr.next);
map.get(curr).rand = map.get(curr.rand);
curr= curr.next;
}
return map.get(head);
}
方法2:
public static Node copyListWithRand(Node head){
Node cur =head;
Node next =null;
while(cur!=null){
next = cur.next; //先把以前的关系记录一下。
cur.next=new Node(cur.getValue());
cur.next.next = next==null?null:next;
cur =next;
}
cur =head;
Node curCopy=null;
while(cur!=null){
next =cur.next.next;
curCopy =cur.next;
curCopy.rand=cur.rand==null?null:cur.rand.next;
cur = next;
}
Node res =head.next;
cur =head;
while(head!=null){
next =cur.next.next;
curCopy=cur.next;
cur.next=next;
curCopy.next=next==null?null:next.next;
cur=next;
}
return res;
}
9.两个单链表相交的一系列问题
注意: 下面的判断链表有无环的方法有错,最好参考我笔记中的LeetCode的141,和142.
1)如何判断一个单链表有环还是无环
方法一:
遍历链表元素,放入HashSet集合中
方法二:
准备俩个指针,一个快指针,一个慢指针,快指针一次走俩步,慢指针一次走一步
如果有环,快指针和慢指针一定会相遇
当出现相遇情况,快指针回到起始节点,并且由一次走俩步变成一次走一步
快指针和慢指针一定会在第一个入环节点相遇
2)如何判断俩个无环链表第一个相交节
方法一:
将遍历第一个链表,放入map中,遍历第二个链表,判断map中是否有这个元素
方法二:
遍历链表一,统计链表一的长度len1以及或者链表一最后一个节点end1
遍历链表二,统计链表二的长度len2以及或者链表二最后一个节点end2
比较end1和end2内存地址是否相等,如果end1不等于end2,则不可能相交
如果相等,比较len1和len2长度,假如len1=100,len2=80,链表一先走20步。。。。
如果一个链表有环,一个链表无环,不可能相交
3)如何判断俩个有环链表第一个相交节点
1.俩个环不相交
2.先相交后共享一个环
如图:
准备工作:
head1,loop1(相交的结点)
head2,loop2
如果loop1等于loop2,属于结构2
如果loop1不等于loop2,可能是结构1或者结构3
代码如下:
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
/**
**结果:如果相交返回相交的结点,如果不想交返回空。
*/
public static Node getIntersectNode(Node head1, Node head2) {
if (head1 == null || head2 == null) {
return null;
}
Node loop1 = getLoopNode(head1); //得到链表的入环结点
Node loop2 = getLoopNode(head2);
if (loop1 == null && loop2 == null) {
return noLoop(head1, head2); //两个无环链表的相交问题
}
if (loop1 != null && loop2 != null) { //两个有环链表的相交问题。
return bothLoop(head1, loop1, head2, loop2);
}
return null;
}
//使用快慢指针的思路,有环就返回入环的结点,无环返回null
public static Node getLoopNode(Node head) {
if (head == null || head.next == null || head.next.next == null) {
return null;
}
Node n1 = head.next; // n1 -> slow
Node n2 = head.next.next; // n2 -> fast
while (n1 != n2) { //当两个指针相遇了,跳出循环,表示有环
if (n2.next == null || n2.next.next == null) {
return null;
}
n2 = n2.next.next;
n1 = n1.next;
}
n2 = head; // n2 -> walk again from head
while (n1 != n2) { //然后两个指针都只走一步,第一次相交的时候就是入环结点。
n1 = n1.next;
n2 = n2.next;
}
return n1;
}
//两个无环链表的相交问题
public static Node noLoop(Node head1, Node head2) {
if (head1 == null || head2 == null) {
return null;
}
Node cur1 = head1;
Node cur2 = head2;
int n = 0;
while (cur1.next != null) {
n++;
cur1 = cur1.next;
}
while (cur2.next != null) {
n--;
cur2 = cur2.next;
}
if (cur1 != cur2) {
return null;
}
cur1 = n > 0 ? head1 : head2; //定位两个链表的长度的问题。
cur2 = cur1 == head1 ? head2 : head1;
n = Math.abs(n);
while (n != 0) {//定位到先走的位置上去,然后在看重合的点。
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
}
//两个有环链表的相交问题,loop:表示入环的结点
public static Node bothLoop(Node head1, Node loop1, Node head2, Node loop2) {
Node cur1 = null;
Node cur2 = null;
if (loop1 == loop2) { //先相交,共享一个环
cur1 = head1;
cur2 = head2;
int n = 0;
while (cur1 != loop1) {
n++;
cur1 = cur1.next;
}
while (cur2 != loop2) {
n--;
cur2 = cur2.next;
}
cur1 = n > 0 ? head1 : head2;
cur2 = cur1 == head1 ? head2 : head1;
n = Math.abs(n);
while (n != 0) {
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
} else { //相交后共享一个环
cur1 = loop1.next;
while (cur1 != loop1) {
if (cur1 == loop2) {
return loop1; //这里返回loop1和loop2都对,只是离哪个链表更近而已。
}
cur1 = cur1.next;
}
return null;
}
}
public static void main(String[] args) {
// 1->2->3->4->5->6->7->null
Node head1 = new Node(1);
head1.next = new Node(2);
head1.next.next = new Node(3);
head1.next.next.next = new Node(4);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(6);
head1.next.next.next.next.next.next = new Node(7);
// 0->9->8->6->7->null
Node head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next.next.next.next.next; // 8->6
System.out.println(getIntersectNode(head1, head2).value);
// 1->2->3->4->5->6->7->4...
head1 = new Node(1);
head1.next = new Node(2);
head1.next.next = new Node(3);
head1.next.next.next = new Node(4);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(6);
head1.next.next.next.next.next.next = new Node(7);
head1.next.next.next.next.next.next = head1.next.next.next; // 7->4
// 0->9->8->2...
head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next; // 8->2
System.out.println(getIntersectNode(head1, head2).value);
// 0->9->8->6->4->5->6..
head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next.next.next.next.next; // 8->6
System.out.println(getIntersectNode(head1, head2).value);
}