斐波那契数列
Day 4
题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。 n<=39
斐波那契数列都很熟悉了。
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义: F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N* ) 。
题目仅仅是更改为0、1、1、2、3、8、13、21、34而已
一开始,就想着直接写就是:
public class Solution {
public int Fibonacci(int n) {
if(n<=0){
return 0;
}else if(n==0||n==1){
return n;
}else{
return Fibonacci(n-1)+Fibonacci(n-2);
}
}
}
通过是通过了,但是发现一个问题。
运行时间:1120ms 占用内存:9344K
看起来好像没什么感觉,但是看到题目普遍的限制:时间限制:1秒 空间限制:32768K
嗯,太年轻了。
然后想能不能优化下递归,因为递归会重复计算大量相同数据。
递归因为要不断地调用函数自身,调用函数就伴随着参数以及函数局部变量入栈,当递归层数较大容易产生栈溢出,所以通常需要我们使用循环优化递归算法。只需要将前面的暂存就行了。
优化如下:
public class Solution {
public int Fibonacci(int n) {
int f1=0,f2=1,fn=0;
if(n==0){
return 0;
}
if(n==1){
return 1;
}
for(int i=2;i<=n;i++){
fn=f1+f2;
f1=f2;
f2=fn;
}
return fn;
}
}
运行时间:14ms 占用内存:9292k
其实就是如下很简单的一个循环,
新的f1+f2 f2就是新的f1 fn就是新的f2;
0、1、1、2、3、5…
f1 f2 fn
0 + 1 = 1
1 + 1 = 2
1 + 2 = 3
…
解决了大量的重复计算。
JS补充:
function getFib(n) {
var n1=1;
var n2=1;
var n3;
for( var i = 3; i <=n; i++){
n3=n1+n2;
n1=n2;
n2=n3;
}
return n3;
}
1、递归(普通版)
function Fibonacci (n) {
if ( n <= 1 ) {return 1};
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
2.递归(优化版)
function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
if( n <= 1 ) {return ac2};
return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}