【剑指offer算法】斐波那契数列

斐波那契数列

Day 4

题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。 n<=39

斐波那契数列都很熟悉了。
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义: F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*

题目仅仅是更改为0、1、1、2、3、8、13、21、34而已
一开始,就想着直接写就是:

    public class Solution {
        public int Fibonacci(int n) {
                if(n<=0){
                    return 0;
                }else if(n==0||n==1){
                    return n;
                }else{
                    return Fibonacci(n-1)+Fibonacci(n-2);
                }
        }
    }

通过是通过了,但是发现一个问题。
运行时间:1120ms 占用内存:9344K
看起来好像没什么感觉,但是看到题目普遍的限制:时间限制:1秒 空间限制:32768K

嗯,太年轻了。
然后想能不能优化下递归,因为递归会重复计算大量相同数据。
递归因为要不断地调用函数自身,调用函数就伴随着参数以及函数局部变量入栈,当递归层数较大容易产生栈溢出,所以通常需要我们使用循环优化递归算法。只需要将前面的暂存就行了。
优化如下:

public class Solution {
    public int Fibonacci(int n) {
        int f1=0,f2=1,fn=0;
        if(n==0){
            return 0;
        }
        if(n==1){
            return 1;
        }
        for(int i=2;i<=n;i++){
            fn=f1+f2;
            f1=f2;
            f2=fn;
        }
        return fn;
    }
}

运行时间:14ms 占用内存:9292k

其实就是如下很简单的一个循环,
新的f1+f2   f2就是新的f1   fn就是新的f2;
0、1、1、2、3、5…
f1   f2   fn
0 + 1 = 1
1 + 1 = 2
1 + 2 = 3

解决了大量的重复计算。

JS补充:

function getFib(n) {
    var n1=1;  
    var n2=1;
    var n3;
    for( var i = 3; i <=n; i++){
        n3=n1+n2;
 	n1=n2;
  	n2=n3; 
    }
    return n3; 
}

1、递归(普通版)

function Fibonacci (n) {
  if ( n <= 1 ) {return 1};
  return Fibonacci(n - 1) + Fibonacci(n - 2);
}

2.递归(优化版

function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
  if( n <= 1 ) {return ac2};
  return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值