- 博客(9)
- 资源 (1)
- 收藏
- 关注
原创 go语言面试题
先记录下面试问的问题:1、谈一下Go的GC机制2、说下三色标记算法的原理3、算法:判断链表是否有回环4、介绍下自己的项目5、开发的流程规范是什么?6、半连接是什么?7、粘包是什么?怎么发送的?8、怎么创建索引9、怎么避免缓存击穿,还有其他的什么方法吗?10、go的mutx怎么使用,乐观和悲观锁分别怎么实现,使用场景是什么?11、服务器受到攻击怎么定位服务器问题?12、rpc的具体实现13、怎么反转树的左右节点14、谈谈epoll和select...
2021-09-26 08:58:51 148
原创 联邦学习篇-secureboost算法
联邦学习在2016年Google发表的联邦学习论文,针对的场景是横向联邦学习,也就是样本特征重叠部分较多,但是用户重叠部分较少的情景。这个场景适合于同一规范下的模型聚合,像Android上的模型训练,样本除了用户不同,基本情况都是一样的。但是随着行业间的融合,更多的场景变成了用户重叠部分很多,但是特征重叠部分较多的情况。比如我是一家银行,我这边目前有一个识别用户能否定时还钱的模型,但是因为我这边只有用户账户的一些信息,这些维度对于决定用户能否定时还钱来说显得还是太少了,这样造成模型的准确率达不到理想的
2021-07-06 20:03:13 1523
原创 source pages
BookmarksBookmarks 书签栏<DL><p> <DT>study <DL><p> <DT>[爱搜资源网整站源码清新蓝调模板 – 资源分享网](https://www.ziyuan.tv/3719.html) <DT>[孟坤 Web 实验室](http://lab.mkblog.cn/) <DT>[数据结构笔记 ...
2021-06-13 14:15:15 627
原创 机器学习入门基础(二)
不纯度决策树的每个根节点和中间节点中都会包含一组数据(工作为公务员为某一个节点),在这组数据中,如果有某一类标签占有较大的比例,我们就说该节点越“纯”,分枝分得好。某一类标签占的比例越大,叶子就越纯,不纯度就越低,分枝就越好。如果没有哪一类标签的比例很大,各类标签都相对平均,则说该节点”不纯“,分枝不好,不纯度高这个其实非常容易理解。分类型决策树在节点上的决策规则是少数服从多数,在一个节点上,如果某一类标签所占的比例较大,那所有进入这个节点的样本都会被认为是这一类别。具体来说,如果90%根据规则进入
2021-05-21 21:45:06 696
原创 Java基础(一)
Java基础(一)Java数据类型1. 基本数据类型数值类型整数类型byte占一个字节( 数据类型是8位、有符号的,以二进制补码表示的整数):-128~127(-2^7 ~ 2^7 -1)short占两个字节(数据类型是 16 位、有符号的以二进制补码表示的整数):-32768-32767(-2^15 ~ 2^15 -1)int占四个字节(数据类型是32位、有符号的以二进制补码表示的整数):-2,147,483,648~2,147,483,647(-2^31 ~2^31
2021-03-15 10:19:23 67
原创 Windows Metasploilt使用教程(一)
Windows Metasploilt使用教程(一)一、名词介绍安装msf是否成功后,可以在dos里面进行输入msfconsole,如果安装成功后显示以下界面:Exploit:攻击通过利用msf中的脚本对目标系统实施精准打击或漏洞验证Payload:攻击载荷攻击载荷是在渗透攻击成功后促使目标系统运行的一段植入代码Listener:监听器生成木马之后发给受害主机,监听反弹木马连入本机二、msf目录组成Data目录:msf攻击过程中使用到的一些文件,如字典文件等(1.
2020-12-27 16:54:57 453
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人