- 博客(9)
- 收藏
- 关注
原创 OpenCompass 来评测 InternLM2 1.8B实践
在OpenCompass中,模型评估流程被精心设计为四个紧密相连的阶段,旨在高效且全面地评估模型性能。:作为整个评估流程的基石,配置阶段要求用户设定评估所需的关键要素,包括选定待评估的模型和数据集,配置评估的具体策略(如评估哪些性能指标),以及指定计算后端来支持评估过程。此外,用户还能根据需求定义结果的展示方式,为后续步骤做好准备。:此阶段是评估流程的核心,OpenCompass并行执行模型的推理和评估任务。推理过程中,模型对数据集进行预测,生成输出结果;
2024-09-21 20:17:17 1286
原创 XTuner 微调个人小助手认知任务
首先,我们需明确微调(Fine-tuning)作为基于预训练模型进行适应性调整的方法,其重要性在于能够利用现有高性能模型,通过少量调整快速适应新任务或数据。微调是一种技术,它允许我们在保持预训练模型大部分权重不变的情况下,仅对部分层进行微调,以适应新的数据集或任务。这种方法不仅加速了模型的收敛过程,还降低了过拟合的风险,同时在不显著增加计算资源消耗的情况下,提升了模型的性能。
2024-09-21 17:18:24 242
原创 llamaindex+Internlm2 RAG实践
实验证明将外部信息添加进来,可以进行检索。这个模块的问题是看不到中间的切分,检索,以及总结的过程,过于高度集成了。
2024-09-18 20:30:29 198
原创 浦语提示词工程实践
测试了一下其他大模型应用,其他模型使用思维链的方式,得出的结果是正确的。在大多数例子中,很多使用了思维链的方式解决数学问题,包括给予解题方法。训练营的原例中做了13.8和13.11大模型能够分清,但是换成83.81和83.121就无法分请,有可能是语料库中加了这部分训练集。在本任务中,叙述了本地大模型对于浮点数的大小把控不好,有局限性。
2024-09-17 16:31:38 158
原创 InternLM2-Chat-1.8B 模型的部署
记录InternLM2-Chat-1.8B 模型的部署过程提示:以下是本篇文章正文内容,下面案例可供参考。
2024-09-16 19:39:07 126
原创 书生大模型全链路开源体系介绍
借助这篇简介,我们能够快速概览“书生·浦语”开放体系的核心架构与运作流程。该体系详尽阐述了从模型的开放共享机制、数据的整合与预处理、到模型的深度训练、个性化调整、性能评估、智能搜索引擎的集成,直至AI应用的实际部署等各个环节。特别地,最新推出的“书生·浦语”大模型2.5版本,在逻辑推理与短期记忆能力上实现了显著增强,为用户带来了更加智能的体验。此外,为了促进数据标注工作的普及与效率,体系还公开了labelLLM项目,旨在简化数据标注流程,便于更多用户参与,共同推动AI技术的繁荣与发展。
2024-09-16 17:41:13 1511
原创 书生浦语-python基础
在debug调试时,我发现代码会将 ’ 这个符号也作为切分依据,导致切分错误。1.将所有字符lower(),不区分大小写。一、Python实现wordcount。
2024-09-16 15:14:54 235
原创 SSH连接与端口映射
再者,在公共Wi-Fi等不安全的网络环境中,VPN能有效保护用户的隐私和数据安全,防止黑客攻击和信息窃取。全称为Virtual Private Network,即虚拟私人网络,它是一种通过公共网络(如互联网)建立加密通道的技术,使得远程用户能够安全地访问公司内部网络资源,仿佛直接连接到公司内网一样。在后续的实际应用中,配置VPN不仅是为了实现远程安全访问,还常用于跨国企业间的数据传输、远程办公人员的网络接入、以及保护敏感数据在公共网络上的传输安全。,用于保护传输的数据不被外部窥探。
2024-09-15 21:08:42 557
原创 vs与c安装
创建launch.json,使用GDB/LLDB。4.安装c/c++ Extension Pack。3.下载MinGW-c语言编译器。6.json文件更改-多文件生成。1.安装vscode。5.选择gcc.exe。拓展包Chinese。
2024-02-04 23:40:58 117
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人