算法的时间复杂度

算法的时间复杂度

  1. 算法的时间复杂度

:在进行算法分析时,语句总的执行次数T(n)是关于问题
n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间度量,记:T(n)=O(f(n))。他表示随问题n的增加,算法执行时间的增长率和f(n)的增长率相同,f(n)是问题规模的某个函数。
一般情况:随着输入规模n的增加,T(n)增加最慢的算法为最优算法。一般表示法:O(1) O(n) O(n2)等等

那么如何分析一个算法的时间复杂度呢?即如何推导出大O阶呢,整理如下:
–用常数1代替运行时间中的所有加法常数,例如:某个算法运行时间是1+1+1则认为是常数1表示O(1),常数都用1来代替。
–在修改后的运行函数中,只保留最高阶
–如果最高阶存在且不唯1,则去除与这个项相乘的常数
–得到的结果就是大O阶
线性阶
一般含有非嵌套循环涉及线性阶,线性阶就是随着问题规模n的扩大,对应计算次数呈直线增长。
平方阶
一般含有嵌套循环涉及平方阶,也就是说有两个for循环。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值