- 题目:整数数组 nums 按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。
给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。
示例:输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4
- 主要的思路是通过二分查找,找到两部分数组的分界点,将其分为两个数组,再判断target属于哪个数组在对应数组上进行二分查找。
public int search(int[] nums, int target){
int hugeNumInd = 0;
int left = 0;
int right = nums.length - 1;
while (left <= right){
int middle = (left + right) / 2;
if (nums[middle] >= nums[0])
left = middle + 1;
else
right = middle - 1;
}
hugeNumInd = right;
if (target >= nums[0]){
left = 0;
right = hugeNumInd;
}else {
left = hugeNumInd + 1;
right = nums.length - 1;
}
while (left <= right){
int middle = (left + right) / 2;
if (nums[middle] > target)
right = middle - 1;
else if (nums[middle] < target)
left = middle + 1;
else
return middle;
}
return -1;
}
这样时间复杂度是O(logN),但速度比下面官方的速度慢1ms
- 官方方法也是使用二分查找,具体思想可以用一句话解释:将数组一分为二,其中一定有一个是有序的,另一个可能是有序,也能是部分有序。此时有序部分用二分法查找。无序部分再一分为二,其中一个一定有序,另一个可能有序,可能无序。就这样循环.
public int search(int[] nums, int target){
if (nums.length == 0)
return -1;
if (nums.length == 1)
return nums[0] == target ? 0 : -1;
int left = 0;
int right = nums.length - 1;
while (left <= right){
int mid = (left + right) / 2;
if (nums[mid] == target)
return mid;
if (nums[mid] >= nums[0]){
if (target >= nums[0] && target < nums[mid])
right = mid - 1;
else
left = mid + 1;
}else {
if (target <= nums[nums.length - 1] && target > nums[mid])
left = mid + 1;
else
right = mid - 1;
}
}
return -1;
}