机器学习
机器学习技术分享
nj_hgr
致力于软件研发Java、大数据、微服务、人工智能的技术分享
展开
-
机器学习项目流程
一、EDA(Exploratory Data Analysis)EDA:也就是探索性的分析数据* 目的:理解每个特征的意义;知道哪些特征是有用的,这些特征哪些是直接可以用的,哪些需要经过变换才能用,为之后的特征工程做准备;1)每个特征的意义、特征的类型:df.describe()df[‘Category’].unique()2)看是否存在 missing value(特征数据是否缺失)df.loc[df.Dates.isnull(),‘Dates’]3)看每个特征下的数据分布,用原创 2020-09-26 14:37:56 · 181 阅读 · 0 评论 -
机器学习简介
机器学习常见算法划分(1)分类:KNN,决策树,贝叶斯,LR,SVM,神经网络,adaboost等(2)回归:线性回归等(3)聚类:k-means,层次聚类等(4)降维:PCA,SVD等(5)推荐:关联规则,协同过滤算法等模型评估与选择Ø在用算法解决实际任务需求时,可以有很多种算法做选择,获得不同的模型,或者由同一个学习算法的不同参数选择,得到不同的模型,选择哪一个算法,选择哪一个参数呢?这就是机器学习算法中的模型选择问题。Ø可以通过测试来评估学习器(模型)的泛化误差,进而选择好的模型。那么原创 2020-09-26 14:31:31 · 168 阅读 · 0 评论