博弈论
aeipyuan
渣渣一枚,请多指教。。。。。。
展开
-
sg函数模板
SG函数: 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。 对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b...原创 2018-08-15 10:35:49 · 633 阅读 · 0 评论 -
博弈论(巴什博奕,威佐夫博弈,尼姆博弈,斐波那契博弈)
转自:https://blog.csdn.net/ac_gibson/article/details/41624623一. 巴什博奕(Bash Game): A和B一块报数,每人每次报最少1个,最多报4个,看谁先报到30。这应该是最古老的关于巴什博奕的游戏了吧。其实如果知道原理,这游戏一点运气成分都没有,只和先手后手有关,比如第一次报数,A报k个数,那么B报5-k个数,那么B报数之...转载 2018-08-15 15:17:28 · 325 阅读 · 0 评论 -
51nod1185 威佐夫游戏 V2 (模拟乘法)
1185 威佐夫游戏 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注有2堆石子。A B两个人轮流拿,A先拿。每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取。拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出2堆石子的数量,问最后谁能赢得比赛。例如:2堆石子分别为3颗和5颗。那么不论A怎...原创 2018-08-15 19:11:01 · 108 阅读 · 0 评论 -
HDU1850 尼姆博弈求可行方案数目
尼姆博弈(Nimm's Game)题型尼姆博弈模型,大致上是这样的:有3堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取1个,多者不限,最后取光者得胜。 分析1、首先自己想一下,就会发现只要最后剩两堆物品一样多(不为零),第三堆为零,那面对这种局势的一方就必败那我们用(a,b,c)表示某种局势,首先(0,0,0)显然是必败态,无论谁面对(0,0,0) ,...原创 2018-08-15 19:43:09 · 158 阅读 · 0 评论 -
HDU2873 Bomb Game(二维SG函数)
Bomb GameTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 806 Accepted Submission(s): 392 Problem DescriptionJohn and Jack, two mathem...原创 2018-08-15 21:06:10 · 253 阅读 · 0 评论 -
HDU1730 Northcott Game 尼姆博弈
Northcott GameTime Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4465 Accepted Submission(s): 2047 Tom和Jerry正在玩一种Northcott游戏,可是Tom老是输,因此...原创 2018-08-16 11:57:02 · 97 阅读 · 0 评论 -
HDU1536 S-Nim(sg函数变换规则)
S-NimTime Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 9829 Accepted Submission(s): 4038Problem DescriptionArthur and his sister Caroll h...原创 2018-08-16 14:47:25 · 148 阅读 · 0 评论 -
蓝桥杯 历届试题 高僧斗法 (尼姆博弈)
历届试题 高僧斗法 时间限制:1.0s 内存限制:256.0MB转自https://blog.csdn.net/qq_40407968/article/details/79763287问题描述 古时丧葬活动中经常请高僧做法事。仪式结束后,有时会有“高僧斗法”的趣味节目,以舒缓压抑的气氛。 节目大略步骤为:先用粮食(一般是稻米)在地上“画”出若干级台阶(表示N级浮屠...转载 2019-03-05 21:28:56 · 224 阅读 · 0 评论