LLM模型在运维领域的应用

4 篇文章 0 订阅
2 篇文章 0 订阅
文章探讨了在云计算复杂环境中,如何通过集成Agent、RAG和LLM模型进行故障根因分析,以提高运维团队的响应速度。描述了一个从告警触发到问题解决的闭环工作流程,强调了数据采集、历史故障匹配和人工审核的重要性。
摘要由CSDN通过智能技术生成

前言

在云计算的世界里,系统变得越来越复杂,随之而来的是故障发生的频率也在增加。当故障发生时,我们需要运维工
程师能够迅速地找出问题所在,并解决它,以减少对用户的影响。这就是所谓的故障根因分析,它是运维工作中至关重要的一环。

背景

想象一下,你正在网上购物,突然支付环节出了问题,无法完成购买。这种情况对于电商平台来说是非常严重的,因为它直接影响到销售和用户体验。因此,当系统出现问题时,运维团队必须快速响应,找出问题的根源,并尽快修复。

但是目前云服务系统包含了许多子系统,比如用户管理、商品推荐、订单处理等。当故障发生时,系统会产生大量的数据,从中找出故障的真正原因就像是在大海里捞针一样困难。如果仅凭借人力运维,是很难实现快速恢复的。

这里提出了一种思路,实现如何快速完成告警到修复再到根因定位的闭环。

思路

大致思路是通过集成Agent+RAG+LLM模型,实现决策和推理。实现最终的快速定位

工作流程

成功
失败
开始
系统监控告警
初步故障诊断
是否为已知故障?
详细数据收集
执行已知解决方案
分析日志和监控数据
是否找到潜在原因?
记录故障案例并更新知识库
使用AI模型进行根因分析
AI模型预测结果
执行推荐的修复操作
人工专家分析
专家提供解决方案
执行修复操作
故障解决确认
更新监控阈值和告警规则
通知相关人员进行进一步调查
结束或重新启动流程

流程解释:

  1. 开始:流程的起点。
  2. 系统监控告警:系统监控发现问题并触发告警。
  3. 初步故障诊断:对故障进行初步判断。
  4. 是否为已知故障:判断故障是否属于已知问题。
  5. 执行已知解决方案:如果是已知故障,执行已有的解决方案。
  6. 详细数据收集:如果不是已知故障,收集更详细的数据。
  7. 分析日志和监控数据:分析收集到的数据以寻找潜在的故障原因。
  8. 是否找到潜在原因:判断是否通过分析找到了可能的原因。
  9. 记录故障案例并更新知识库:如果找到原因,记录下来并更新知识库。
  10. 使用AI模型进行根因分析:如果未找到原因,使用AI模型进行深入分析。
  11. AI模型预测结果:AI模型提供预测的根因。
  12. 执行推荐的修复操作:根据AI模型的推荐执行修复操作。
  13. 故障解决确认:确认故障是否已被解决。
  14. 更新监控阈值和告警规则:如果故障解决,更新监控阈值和告警规则以避免未来类似问题。
  15. 通知相关人员进行进一步调查:如果故障未解决,通知相关人员进行更深入的调查。
  16. 结束或重新启动流程:根据故障处理结果,结束流程或重新开始。
  17. 人工专家分析:如果AI模型失败,由人工专家进行分析。

工作原理

主要分为两个阶段:

  • 数据采集:在这个阶段,实现从系统中收集必要的信息,比如系统日志,监控数据等。
  • 根因预测:有了数据后,使用大模型来分析这些信息,通过关联与相似性算法,找出历史上相似的案例,并根据过往案例来预测当前故障的根因。
  • 实践与反馈:人工确认最终结论的准确性。并入库更新知识库,以备后续参考。
数据采集

1、告警触发以及分类,通过对告警内容分析,通过分类算法识别告警类型
2、采集这段时间内的日志,监控指标,数据库,用户反馈等。根据时间形成事件轴。
3、通过专家系统处理模块:实现定向拨测。关联查询,执行修复操作等

根因预测

1、基于大模型自动推理决策,结合运维处理经验+prompt(思维链)指导模型分析
2、历史故障匹配:搜索历史上相似的故障案例,并提取解决方案。同时引入时间加权。优先考虑近期相似的故障
3、上下文信息总结:综合上述信息,提出最终结论,包括分析过程,分析结果,以及解决办法等。

实施与反馈

1、故障诊断报告:形成一份包含故障根因,可能的解决方案和未来预防措施的详细报告
2、人工审核与执行:运维工程师审核AI生成的报告,并根据实际情况执行修复操作,如果AI诊断错误或者不完整,工程师可以手动修正并更新知识库。
3、持续学习优化:系统根据新的故障案例和人工反馈进行持续学习,优化模型的准确性和效率。

总结

这篇文章纯粹YY,并没有经过完整的实际测试(目前正在调)。在这里就抛砖引玉了,希望大家拍砖。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值