前言
在云计算的世界里,系统变得越来越复杂,随之而来的是故障发生的频率也在增加。当故障发生时,我们需要运维工
程师能够迅速地找出问题所在,并解决它,以减少对用户的影响。这就是所谓的故障根因分析,它是运维工作中至关重要的一环。
背景
想象一下,你正在网上购物,突然支付环节出了问题,无法完成购买。这种情况对于电商平台来说是非常严重的,因为它直接影响到销售和用户体验。因此,当系统出现问题时,运维团队必须快速响应,找出问题的根源,并尽快修复。
但是目前云服务系统包含了许多子系统,比如用户管理、商品推荐、订单处理等。当故障发生时,系统会产生大量的数据,从中找出故障的真正原因就像是在大海里捞针一样困难。如果仅凭借人力运维,是很难实现快速恢复的。
这里提出了一种思路,实现如何快速完成告警到修复再到根因定位的闭环。
思路
大致思路是通过集成Agent+RAG+LLM模型,实现决策和推理。实现最终的快速定位
工作流程
流程解释:
- 开始:流程的起点。
- 系统监控告警:系统监控发现问题并触发告警。
- 初步故障诊断:对故障进行初步判断。
- 是否为已知故障:判断故障是否属于已知问题。
- 执行已知解决方案:如果是已知故障,执行已有的解决方案。
- 详细数据收集:如果不是已知故障,收集更详细的数据。
- 分析日志和监控数据:分析收集到的数据以寻找潜在的故障原因。
- 是否找到潜在原因:判断是否通过分析找到了可能的原因。
- 记录故障案例并更新知识库:如果找到原因,记录下来并更新知识库。
- 使用AI模型进行根因分析:如果未找到原因,使用AI模型进行深入分析。
- AI模型预测结果:AI模型提供预测的根因。
- 执行推荐的修复操作:根据AI模型的推荐执行修复操作。
- 故障解决确认:确认故障是否已被解决。
- 更新监控阈值和告警规则:如果故障解决,更新监控阈值和告警规则以避免未来类似问题。
- 通知相关人员进行进一步调查:如果故障未解决,通知相关人员进行更深入的调查。
- 结束或重新启动流程:根据故障处理结果,结束流程或重新开始。
- 人工专家分析:如果AI模型失败,由人工专家进行分析。
工作原理
主要分为两个阶段:
- 数据采集:在这个阶段,实现从系统中收集必要的信息,比如系统日志,监控数据等。
- 根因预测:有了数据后,使用大模型来分析这些信息,通过关联与相似性算法,找出历史上相似的案例,并根据过往案例来预测当前故障的根因。
- 实践与反馈:人工确认最终结论的准确性。并入库更新知识库,以备后续参考。
数据采集
1、告警触发以及分类,通过对告警内容分析,通过分类算法识别告警类型
2、采集这段时间内的日志,监控指标,数据库,用户反馈等。根据时间形成事件轴。
3、通过专家系统处理模块:实现定向拨测。关联查询,执行修复操作等
根因预测
1、基于大模型自动推理决策,结合运维处理经验+prompt(思维链)指导模型分析
2、历史故障匹配:搜索历史上相似的故障案例,并提取解决方案。同时引入时间加权。优先考虑近期相似的故障
3、上下文信息总结:综合上述信息,提出最终结论,包括分析过程,分析结果,以及解决办法等。
实施与反馈
1、故障诊断报告:形成一份包含故障根因,可能的解决方案和未来预防措施的详细报告
2、人工审核与执行:运维工程师审核AI生成的报告,并根据实际情况执行修复操作,如果AI诊断错误或者不完整,工程师可以手动修正并更新知识库。
3、持续学习优化:系统根据新的故障案例和人工反馈进行持续学习,优化模型的准确性和效率。
总结
这篇文章纯粹YY,并没有经过完整的实际测试(目前正在调)。在这里就抛砖引玉了,希望大家拍砖。