CDQ 分治是一种分治,可以解决许多重要问题。它的优点有:常数小,代码复杂度较低,并且可以替代一些高难度数据结构(如树套树)。缺点是只能解决离线的问题。
CDQ 分治解决的基本问题是:给定一些修改和查询,离线求出查询的结果;它的基本思想是: Divide the Queries into [l,mid] and [mid+1,r]⇒Use [l,mid] to Update [mid+1,r] D i v i d e t h e Q u e r i e s i n t o [ l , m i d ] a n d [ m i d + 1 , r ] ⇒ U s e [ l , m i d ] t o U p d a t e [ m i d + 1 , r ] 。
例题一:BZOJ 3262 陌上花开
经典的三维偏序问题。先按第一维排好序,然后再用 CDQ 分治将第二维排序,最后用树状树组维护第三维即可。时间复杂度 Θ(nlog2n) Θ ( n log 2 n ) 。具体方法见代码。
CDQ 分治的套路:第一维排序,第二维 CDQ,其他维度使用数据结构。
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 100005;
const int maxk = 200005;
int n, m, k, ans[maxn], bit[maxk];
struct query {
int a, b, c, cnt, res;
bool operator<(const query &x) const{
return a == x.a ? b == x.b ? c < x.c : b < x.b : a < x.a;
}
bool operator==(const query &x) const{
return a == x.a && b == x.b && c == x.c;
}
} q[maxn];
bool comp(const query &x, const query &y) {
return x.b == y.b ? x.c < y.c : x.b < y.b;
}
void add(int x, int y) {
for (; x <= k; x += x & -x) {
bit[x] += y;
}
}
int sum(int x) {
int y = 0;
for (; x >= 1; x -= x & -x) {
y += bit[x];
}
return y;
}
void cdq(int lb, int rb) {
if (lb == rb) {
return;
}
int md = (lb + rb) >> 1, p = lb;
cdq(lb, md), cdq(md + 1, rb);
sort(q + lb, q + md + 1, comp);
sort(q + md + 1, q + rb + 1, comp);
for (int i = md + 1; i <= rb; i++) {
for (; p <= md && q[p].b <= q[i].b; p++) {
add(q[p].c, q[p].cnt);
}
q[i].res += sum(q[i].c);
}
for (int i = lb; i < p; i++) {
add(q[i].c, -q[i].cnt);
}
}
int main() {
scanf("%d %d", &n, &k);
for (int i = 1; i <= n; i++) {
scanf("%d %d %d", &q[i].a, &q[i].b, &q[i].c);
}
sort(q + 1, q + n + 1);
for (int i = 1, j = 1; i <= n; i = j + 1) {
while (q[i] == q[j + 1]) j++;
q[++m] = q[i], q[m].cnt = j - i + 1;
}
cdq(1, m);
for (int i = 1; i <= m; i++) {
ans[q[i].res + q[i].cnt - 1] += q[i].cnt;
}
for (int i = 0; i < n; i++) {
printf("%d\n", ans[i]);
}
return 0;
}
我们不用树状树组,用 CDQ 分治来做这题。首先,可以将每个询问拆成四个前缀询问。然后就转化为了一个三维 (time,x,y) ( t i m e , x , y ) 偏序问题。注意在合并时只拿左边的修改操作更新右边的查询操作。
两者的时间复杂度没有区别 (Θ(nlog2n)) ( Θ ( n log 2 n ) ) ,但是二维树状树组的空间复杂度为 Θ(n2) Θ ( n 2 ) ,而 CDQ 分治为 Θ(n) Θ ( n ) 。
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 500005;
const int maxm = 500005;
const int maxq = 2000005;
int n, m, tot, cur, num, ans[maxn], bit[maxm];
inline int abs(int x) {
return x < 0 ? -x : x;
}
struct query {
int t, i, a, b, c;
bool operator<(const query &x) {
return a == x.a ? abs(t) < abs(x.t) : a < x.a;
}
} q[maxq];
bool comp(query x, query y) {
return x.b < y.b;
}
void addqry(int t, int i, int a, int b, int c) {
q[++tot].t = t, q[tot].i = i;
q[tot].a = a, q[tot].b = b, q[tot].c = c;
}
void add(int x, int y) {
for (; x <= m; x += x & -x) {
bit[x] += y;
}
}
int sum(int x) {
int y = 0;
for (; x >= 1; x -= x & -x) {
y += bit[x];
}
return y;
}
void cdq(int l, int r) {
if (l >= r) {
return;
}
int mid = (l + r) >> 1;
cdq(l, mid), cdq(mid + 1, r);
sort(q + l, q + mid + 1, comp);
sort(q + mid + 1, q + r + 1, comp);
int ptr = l;
for (int i = mid + 1; i <= r; i++) {
while (ptr <= mid && q[ptr].b <= q[i].b) {
if (q[ptr].t == 0) {
add(q[ptr].c, q[ptr].i);
}
ptr++;
}
if (q[i].t) {
ans[q[i].i] += q[i].t * sum(q[i].c);
}
}
for (int i = l; i < ptr; i++) {
if (q[i].t == 0) {
add(q[i].c, -q[i].i);
}
}
}
int main() {
scanf("%*d %d", &n);
m = 1025;
for (int opt, a, b, c, d; ; ) {
scanf("%d", &opt);
if (opt == 1) {
scanf("%d %d %d", &a, &b, &c);
addqry(0, c, ++cur, a + 1, b + 1);
} else if (opt == 2) {
scanf("%d %d %d %d", &a, &b, &c, &d), ++num;
addqry(1, num, cur, a, b);
addqry(-1, num, cur, a, d + 1);
addqry(-1, num, cur, c + 1, b);
addqry(1, num, cur, c + 1, d + 1);
} else {
break;
}
}
cdq(1, tot);
for (int i = 1; i <= num; i++) {
printf("%d\n", ans[i]);
}
return 0;
}
例题三:Luogu 3157 动态逆序对
正着做似乎很难,我们要倒退。
即:每个删除操作对应一个添加操作,添加一个 (time,pos,value) ( t i m e , p o s , v a l u e ) 的三元组进去。每一次,我们要计算有几个 (time′,pos′,value′) ( t i m e ′ , p o s ′ , v a l u e ′ ) 满足 time′≤time t i m e ′ ≤ t i m e && (( pos′≤pos p o s ′ ≤ p o s && value′≥value v a l u e ′ ≥ v a l u e ) || pos′≥pos p o s ′ ≥ p o s && value′≤value v a l u e ′ ≤ v a l u e )。CDQ 分治即可。
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 100005;
bool vis[maxn];
int n, m, tot, pos[maxn], pnt[maxn], bit[maxn];
long long ans[maxn];
struct query {
int i, a, b;
} q[maxn];
bool comp1(query x, query y) {
return x.a < y.a;
}
bool comp2(query x, query y) {
return x.a > y.a;
}
void add(int x, int y) {
for (; x <= n; x += x & -x) {
bit[x] += y;
}
}
int sum(int x) {
int res = 0;
for (; x >= 1; x -= x & -x) {
res += bit[x];
}
return res;
}
void cdq(int lb, int rb) {
if (lb == rb) {
return;
}
int md = (lb + rb) >> 1;
cdq(lb, md), cdq(md + 1, rb);
sort(q + lb, q + md + 1, comp1);
sort(q + md + 1, q + rb + 1, comp1);
int p = lb;
for (int i = md + 1; i <= rb; i++) {
while (p <= md && q[p].a < q[i].a) {
add(n - q[p++].b + 1, 1);
}
ans[q[i].i] += sum(n - q[i].b + 1);
}
for (int i = lb; i < p; i++) {
add(n - q[i].b + 1, -1);
}
sort(q + lb, q + md + 1, comp2);
sort(q + md + 1, q + rb + 1, comp2);
p = lb;
for (int i = md + 1; i <= rb; i++) {
while (p <= md && q[p].a > q[i].a) {
add(q[p++].b, 1);
}
ans[q[i].i] += sum(q[i].b);
}
for (int i = lb; i < p; i++) {
add(q[i].b, -1);
}
}
int main() {
scanf("%d %d", &n, &m);
for (int t, i = 1; i <= n; i++) {
scanf("%d", &t);
pos[t] = i;
}
for (int t, i = 1; i <= m; i++) {
scanf("%d", &t);
++tot;
q[tot].i = n - tot + 1;
q[tot].a = pos[t];
q[tot].b = t;
vis[pos[t]] = 1;
}
for (int i = 1; i <= n; i++) {
if (!vis[pos[i]]) {
++tot;
q[tot].i = n - tot + 1;
q[tot].a = pos[i];
q[tot].b = i;
}
}
reverse(q + 1, q + tot + 1);
cdq(1, tot);
for (int i = 1; i <= n; i++) {
ans[i] += ans[i - 1];
}
for (int i = n; i > n - m; i--) {
printf("%lld\n", ans[i]);
}
return 0;
}