「算法笔记」CDQ分治

CDQ 分治新手教程

CDQ 分治是一种分治,可以解决许多重要问题。它的优点有:常数小,代码复杂度较低,并且可以替代一些高难度数据结构(如树套树)。缺点是只能解决离线的问题。

CDQ 分治解决的基本问题是:给定一些修改和查询,离线求出查询的结果;它的基本思想是: Divide the Queries into [l,mid] and [mid+1,r]Use [l,mid] to Update [mid+1,r] D i v i d e   t h e   Q u e r i e s   i n t o   [ l , m i d ]   a n d   [ m i d + 1 , r ] ⇒ U s e   [ l , m i d ]   t o   U p d a t e   [ m i d + 1 , r ]

例题一:BZOJ 3262 陌上花开

经典的三维偏序问题。先按第一维排好序,然后再用 CDQ 分治将第二维排序,最后用树状树组维护第三维即可。时间复杂度 Θ(nlog2n) Θ ( n log 2 ⁡ n ) 。具体方法见代码。

CDQ 分治的套路:第一维排序,第二维 CDQ,其他维度使用数据结构。

#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 100005;
const int maxk = 200005;
int n, m, k, ans[maxn], bit[maxk];
struct query {
    int a, b, c, cnt, res;
    bool operator<(const query &x) const{
        return a == x.a ? b == x.b ? c < x.c : b < x.b : a < x.a;
    }
    bool operator==(const query &x) const{
        return a == x.a && b == x.b && c == x.c;
    }
} q[maxn];
bool comp(const query &x, const query &y) {
    return x.b == y.b ? x.c < y.c : x.b < y.b;
}
void add(int x, int y) {
    for (; x <= k; x += x & -x) {
        bit[x] += y;
    }
}
int sum(int x) {
    int y = 0;
    for (; x >= 1; x -= x & -x) {
        y += bit[x];
    }
    return y;
}
void cdq(int lb, int rb) {
    if (lb == rb) {
        return;
    }
    int md = (lb + rb) >> 1, p = lb;
    cdq(lb, md), cdq(md + 1, rb);
    sort(q + lb, q + md + 1, comp);
    sort(q + md + 1, q + rb + 1, comp);
    for (int i = md + 1; i <= rb; i++) {
        for (; p <= md && q[p].b <= q[i].b; p++) {
            add(q[p].c, q[p].cnt);
        }
        q[i].res += sum(q[i].c);
    }
    for (int i = lb; i < p; i++) {
        add(q[i].c, -q[i].cnt);
    }
} 
int main() {
    scanf("%d %d", &n, &k);
    for (int i = 1; i <= n; i++) {
        scanf("%d %d %d", &q[i].a, &q[i].b, &q[i].c);
    }
    sort(q + 1, q + n + 1);
    for (int i = 1, j = 1; i <= n; i = j + 1) {
        while (q[i] == q[j + 1])    j++;
        q[++m] = q[i], q[m].cnt = j - i + 1;
    }
    cdq(1, m);
    for (int i = 1; i <= m; i++) {
        ans[q[i].res + q[i].cnt - 1] += q[i].cnt;
    }
    for (int i = 0; i < n; i++) {
        printf("%d\n", ans[i]);
    }
    return 0;
}

例题二:POJ 1195 二维树状树组模版

我们不用树状树组,用 CDQ 分治来做这题。首先,可以将每个询问拆成四个前缀询问。然后就转化为了一个三维 (time,x,y) ( t i m e , x , y ) 偏序问题。注意在合并时只拿左边的修改操作更新右边的查询操作。

两者的时间复杂度没有区别 (Θ(nlog2n)) ( Θ ( n log 2 ⁡ n ) ) ,但是二维树状树组的空间复杂度为 Θ(n2) Θ ( n 2 ) ,而 CDQ 分治为 Θ(n) Θ ( n )

#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 500005;
const int maxm = 500005;
const int maxq = 2000005;
int n, m, tot, cur, num, ans[maxn], bit[maxm];
inline int abs(int x) {
    return x < 0 ? -x : x;
}
struct query {
    int t, i, a, b, c;
    bool operator<(const query &x) {
        return a == x.a ? abs(t) < abs(x.t) : a < x.a;
    }
} q[maxq];
bool comp(query x, query y) {
    return x.b < y.b;
}
void addqry(int t, int i, int a, int b, int c) {
    q[++tot].t = t, q[tot].i = i;
    q[tot].a = a, q[tot].b = b, q[tot].c = c;
}
void add(int x, int y) {
    for (; x <= m; x += x & -x) {
        bit[x] += y;
    }
}
int sum(int x) {
    int y = 0;
    for (; x >= 1; x -= x & -x) {
        y += bit[x];
    }
    return y;
}
void cdq(int l, int r) {
    if (l >= r) {
        return;
    }
    int mid = (l + r) >> 1;
    cdq(l, mid), cdq(mid + 1, r);
    sort(q + l, q + mid + 1, comp);
    sort(q + mid + 1, q + r + 1, comp);
    int ptr = l;
    for (int i = mid + 1; i <= r; i++) {
        while (ptr <= mid && q[ptr].b <= q[i].b) {
            if (q[ptr].t == 0) {
                add(q[ptr].c, q[ptr].i);
            }
            ptr++;
        }
        if (q[i].t) {
            ans[q[i].i] += q[i].t * sum(q[i].c);
        }
    }
    for (int i = l; i < ptr; i++) {
        if (q[i].t == 0) {
            add(q[i].c, -q[i].i);
        }
    }
}
int main() {
    scanf("%*d %d", &n);
    m = 1025;
    for (int opt, a, b, c, d; ; ) {
        scanf("%d", &opt);
        if (opt == 1) {
            scanf("%d %d %d", &a, &b, &c);
            addqry(0, c, ++cur, a + 1, b + 1);
        } else if (opt == 2) {
            scanf("%d %d %d %d", &a, &b, &c, &d), ++num;
            addqry(1, num, cur, a, b);
            addqry(-1, num, cur, a, d + 1);
            addqry(-1, num, cur, c + 1, b);
            addqry(1, num, cur, c + 1, d + 1);
        } else {
            break;
        }
    }
    cdq(1, tot);
    for (int i = 1; i <= num; i++) {
        printf("%d\n", ans[i]);
    }
    return 0;
}

例题三:Luogu 3157 动态逆序对

正着做似乎很难,我们要倒退。

即:每个删除操作对应一个添加操作,添加一个 (time,pos,value) ( t i m e , p o s , v a l u e ) 的三元组进去。每一次,我们要计算有几个 (time,pos,value) ( t i m e ′ , p o s ′ , v a l u e ′ ) 满足 timetime t i m e ′ ≤ t i m e && (( pospos p o s ′ ≤ p o s && valuevalue v a l u e ′ ≥ v a l u e ) || pospos p o s ′ ≥ p o s && valuevalue v a l u e ′ ≤ v a l u e )。CDQ 分治即可。

#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 100005;
bool vis[maxn];
int n, m, tot, pos[maxn], pnt[maxn], bit[maxn];
long long ans[maxn];
struct query {
    int i, a, b;
} q[maxn];
bool comp1(query x, query y) {
    return x.a < y.a;
}
bool comp2(query x, query y) {
    return x.a > y.a;
}
void add(int x, int y) {
    for (; x <= n; x += x & -x) {
        bit[x] += y;
    }
}
int sum(int x) {
    int res = 0;
    for (; x >= 1; x -= x & -x) {
        res += bit[x];
    }
    return res;
}
void cdq(int lb, int rb) {
    if (lb == rb) {
        return;
    }
    int md = (lb + rb) >> 1;
    cdq(lb, md), cdq(md + 1, rb);
    sort(q + lb, q + md + 1, comp1);
    sort(q + md + 1, q + rb + 1, comp1);
    int p = lb;
    for (int i = md + 1; i <= rb; i++) {
        while (p <= md && q[p].a < q[i].a) {
            add(n - q[p++].b + 1, 1);
        }
        ans[q[i].i] += sum(n - q[i].b + 1);
    }
    for (int i = lb; i < p; i++) {
        add(n - q[i].b + 1, -1);
    }
    sort(q + lb, q + md + 1, comp2);
    sort(q + md + 1, q + rb + 1, comp2);
    p = lb;
    for (int i = md + 1; i <= rb; i++) {
        while (p <= md && q[p].a > q[i].a) {
            add(q[p++].b, 1);
        }
        ans[q[i].i] += sum(q[i].b);
    }
    for (int i = lb; i < p; i++) {
        add(q[i].b, -1);
    }
}
int main() {
    scanf("%d %d", &n, &m);
    for (int t, i = 1; i <= n; i++) {
        scanf("%d", &t);
        pos[t] = i;
    }
    for (int t, i = 1; i <= m; i++) {
        scanf("%d", &t);
        ++tot;
        q[tot].i = n - tot + 1;
        q[tot].a = pos[t];
        q[tot].b = t;
        vis[pos[t]] = 1;
    }
    for (int i = 1; i <= n; i++) {
        if (!vis[pos[i]]) {
            ++tot;
            q[tot].i = n - tot + 1;
            q[tot].a = pos[i];
            q[tot].b = i; 
        }
    }
    reverse(q + 1, q + tot + 1);
    cdq(1, tot);
    for (int i = 1; i <= n; i++) {
        ans[i] += ans[i - 1];
    }
    for (int i = n; i > n - m; i--) {
        printf("%lld\n", ans[i]);
    }
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值