数据挖掘--Heartbeatclassification

HeartbeatClassification是天池数据比赛的一道题目。
记录学习过程。
从近几年的各大数据竞赛中可以看到模型融合的身影,本文主要有“十折交叉法”,“lgb",将数据集分为训练集、验证集、测试集。

导入第三方包:

# 导入第三方包
import os
import gc
import math

import pandas as pd
import numpy as np

import lightgbm as lgb
import xgboost as xgb
from catboost import CatBoostRegressor
from sklearn.linear_model import SGDRegressor,LinearRegression,Ridge
from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import StratifiedKFold,KFold
from sklearn.metrics import log_loss
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder

from tqdm import tqdm
import matplotlib.pyplot as plt
import time 
import warnings
warnings.filterwarnings('ignore')

读取数据

train=pd.read_csv('\Train.csv')
test=pd.read_csv('\TestA.csv')
train.head()

train 数据集

test.head()

数据预处理

#为了减少数据内存,其他数据集也可使用
def reduce_mem_usage(df):
    start_mem=df.memory_usage().sum()/1024**2
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    for col in df.columns:
        col_type=df[col].dtype
        
        if col_type !=object:
            c_min=df[col].min()
            c_max=df[col].max()
            if str(col_type)[:3]=='int':
                if c_min>np.iinfo(np.int8).min and c_max<np.iinfo(np.int8).max:
                    df[col]=df[col].astype(np.int8)
                elif c_min>np.iinfo(np.int16).min and c_max<np.iinfo(np.int16).max:
                    df[col]=df[col].astype(np.int16
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值