1.可重复利用的线程
若存在两个function,常规思路是开两个线程。若使用进程安全队列,将function传入队列,再将队列传入线程,就实现了一个线程处理多个function。
from threading import Thread
import time
import queue
def fun1():
time.sleep(2)
print("任务一完成")
def fun2(*args,**kwargs): #args,kwargs是函数的参数
time.sleep(4)
print("任务二完成",args,kwargs)
class Mythread(Thread):
def __init__(self,que):
super().__init__()
self.que=que #线程安全队列,存放function
self.daemon=True #设置守护进程
def run(self):
while True:
#线程队列有一个数量计数器,每put计数器+1,但get()不会-1,只有tash_done方法才会-1
func,args,kwargs=self.que.get() #取得队列中的一个事件
func(*args,**kwargs) #运行事件
self.que.task_done() #线程队列计数器-1
def apply_async(self,item,*args,**kwargs): #将函数名,参数以元组的形式加入队列
self.que.put( (item,args,kwargs) )
def join(self):
self.que.join() #判断计数器是否为0,为0便结束线程
# 主函数调用来使队列中的事件全部运行完才继续主进程
que = queue.Queue()
t = Mythread(que)
t.apply_async(fun1) #向线程队列中添加任务
t.apply_async(fun2,1,2,a=3,b=4)
t.start()
t.join() #阻塞住,使子进程结束后才运行后续主进程
print('end')
任务一完成
任务二完成 (1, 2) {'b': 4, 'a': 3}
end
2.线程池的简单实现
主线程将要运行的事件全部添加到线程池中,线程池中的可重复利用的线程可接收这些事件并运行
主线程: 相当于生产者,只管向线程池提交任务。并不关心线程池是如何执行任务的。因此,并不关心是哪一个线程执行的这个任务。
线程池:线程池: 相当于消费者,负责接收任务,并将任务分配到一个空闲的线程中去执行。
from threading import Thread
import time
import queue
def fun1():
time.sleep(2)
print("任务一完成")
def fun2(*args,**kwargs):
time.sleep(2)
print("任务二完成",args,kwargs)
class Mythreadpool:
def __init__(self,n): #传递参数,表示线程池中的总线程数
self.queue=queue.Queue() #生成线程安全队列
for i in range(n):
Thread(target=self.worker,daemon=True).start() #直接设置守护进程并开启
def worker(self):
while True:
func,args,kwargs=self.queue.get() #从队列中取事件
func(*args,**kwargs) #运行事件
self.queue.task_done() #计数器-1
def apply_async(self,item,*args,**kwargs): #向队列中添加事件
self.queue.put( (item,args,kwargs) )
def join(self): #阻塞住,判断计数器是否为零
self.queue.join()
threadpool = Mythreadpool(4)
threadpool.apply_async(fun1)
threadpool.apply_async(fun2,1,2,a=3)
print("任务提交完成")
threadpool.join()
任务提交完成
任务一完成
任务二完成 (1, 2) {'a': 3}
3.python自带池
注意线程池库的导入方式:from multiprocessing.pool import ThreadPool
字典参数的传入方式:kwds={}
from multiprocessing.pool import ThreadPool
import time
def fun1():
time.sleep(2)
print("任务一完成")
def fun2(*args,**kwargs):
time.sleep(2)
print("任务二完成",args,kwargs)
pool = ThreadPool(4)
pool.apply_async(fun1)
pool.apply_async(fun2,args=(1,2),kwds={'a':3,'d':4})
print('提交结束')
pool.close() #注意,join之前必须close,表示不允许再提交事件
pool.join()
print('任务完成')
提交结束
任务一完成
任务二完成 (1, 2) {'a': 3, 'd': 4}
任务完成
类似的,进程中也存在进程池,通过
from multiprocessing import Pool
导入,使用时
pool = Pool(4)
池的操作
- 操作一: close - 关闭提交通道,不a再提交任务
- 操作二: apply_async – 向池中提交任务
- 操作三: terminate - 中止进程池,中止所有任务
4.使用池来实现并发服务器
使用线程池来实现并发服务器
服务端
from multiprocessing import Pool #进程池
from multiprocessing.pool import ThreadPool #线程池
import socket
sock = socket.socket()
sock.bind(('',8085))
sock.listen(100)
def worker(con):
while True:
try:
data = con.recv(1024)
if data:
print(data)
con.send(data)
else:
con.close()
break
except Exception as e:
print(e)
con.close()
break
if __name__ == '__main__':
pool = ThreadPool(4)
while True:
con,addr = sock.accept()
pool.apply_async(worker,args=(con,))
客户端
import socket
client = socket.socket()
client.connect(('127.0.0.1',8085))
while True:
data = input('please write the message:')
client.send(data.encode())
print(client.recv(1024).decode())
if data == 'Q' or data == 'q':
break
client.close()
使用进程池+线程池实现并发服务器
服务端
from multiprocessing import Pool,cpu_count
from multiprocessing.pool import ThreadPool
import socket
def worker(con):
while True:
try:
data = con.recv(1024)
if data:
print(data)
con.send(data)
else:
con.close()
break
except Exception as e:
print(e)
con.close()
break
def work_process(sock):
thread_pool=ThreadPool(2*cpu_count()) #一般开核数两倍的线程
while True:
con,addr=sock.accept()
print("已连接",con)
thread_pool.apply_async(worker,args=(con,))
if __name__=="__main__":
sock = socket.socket()
sock.bind(('', 8086))
sock.listen(100)
n= cpu_count() #cpu的核数
process_pool = Pool(n) #开与核数相等的进程
for i in range(n):
process_pool.apply_async(work_process,args=(sock,))
process_pool.close()
process_pool.join()
客户端同上