进程池与线程池

1.可重复利用的线程

若存在两个function,常规思路是开两个线程。若使用进程安全队列,将function传入队列,再将队列传入线程,就实现了一个线程处理多个function。

from threading import Thread
import time
import queue
def fun1():
    time.sleep(2)
    print("任务一完成")
def fun2(*args,**kwargs): #args,kwargs是函数的参数
    time.sleep(4)
    print("任务二完成",args,kwargs)
class Mythread(Thread):
    def __init__(self,que):
        super().__init__()
        self.que=que #线程安全队列,存放function
        self.daemon=True #设置守护进程
    def run(self):
        while True:
            #线程队列有一个数量计数器,每put计数器+1,但get()不会-1,只有tash_done方法才会-1
            func,args,kwargs=self.que.get() #取得队列中的一个事件
            func(*args,**kwargs) #运行事件
            self.que.task_done() #线程队列计数器-1
    def apply_async(self,item,*args,**kwargs): #将函数名,参数以元组的形式加入队列
        self.que.put( (item,args,kwargs) )
    def join(self):
        self.que.join() #判断计数器是否为0,为0便结束线程
                          # 主函数调用来使队列中的事件全部运行完才继续主进程
que = queue.Queue()
t = Mythread(que)

t.apply_async(fun1) #向线程队列中添加任务
t.apply_async(fun2,1,2,a=3,b=4)
t.start()
t.join() #阻塞住,使子进程结束后才运行后续主进程
print('end')
任务一完成
任务二完成 (1, 2) {'b': 4, 'a': 3}
end

2.线程池的简单实现

主线程将要运行的事件全部添加到线程池中,线程池中的可重复利用的线程可接收这些事件并运行

主线程: 相当于生产者,只管向线程池提交任务。并不关心线程池是如何执行任务的。因此,并不关心是哪一个线程执行的这个任务。

线程池:线程池: 相当于消费者,负责接收任务,并将任务分配到一个空闲的线程中去执行。

from threading import Thread
import time
import queue

def fun1():
    time.sleep(2)
    print("任务一完成")
def fun2(*args,**kwargs):
    time.sleep(2)
    print("任务二完成",args,kwargs)

class Mythreadpool:
    def __init__(self,n): #传递参数,表示线程池中的总线程数
        self.queue=queue.Queue() #生成线程安全队列
        for i in range(n):
            Thread(target=self.worker,daemon=True).start() #直接设置守护进程并开启
    def worker(self):
        while True:
            func,args,kwargs=self.queue.get() #从队列中取事件
            func(*args,**kwargs) #运行事件
            self.queue.task_done() #计数器-1
    def apply_async(self,item,*args,**kwargs): #向队列中添加事件
        self.queue.put(  (item,args,kwargs)  )
    def join(self): #阻塞住,判断计数器是否为零
        self.queue.join()

threadpool = Mythreadpool(4)

threadpool.apply_async(fun1)
threadpool.apply_async(fun2,1,2,a=3)
print("任务提交完成")
threadpool.join()
任务提交完成
任务一完成
任务二完成 (1, 2) {'a': 3}

3.python自带池

注意线程池库的导入方式:from multiprocessing.pool import ThreadPool

       字典参数的传入方式:kwds={}

from multiprocessing.pool import ThreadPool
import  time

def fun1():
    time.sleep(2)
    print("任务一完成")
def fun2(*args,**kwargs):
    time.sleep(2)
    print("任务二完成",args,kwargs)
pool = ThreadPool(4)
pool.apply_async(fun1)
pool.apply_async(fun2,args=(1,2),kwds={'a':3,'d':4})
print('提交结束')
pool.close() #注意,join之前必须close,表示不允许再提交事件
pool.join()
print('任务完成')
提交结束
任务一完成
任务二完成 (1, 2) {'a': 3, 'd': 4}
任务完成

类似的,进程中也存在进程池,通过

from multiprocessing import Pool

导入,使用时

pool = Pool(4)

池的操作

  • 操作一: close - 关闭提交通道,不a再提交任务
  • 操作二: apply_async – 向池中提交任务
  • 操作三: terminate - 中止进程池,中止所有任务

4.使用池来实现并发服务器

使用线程池来实现并发服务器

服务端

from multiprocessing import Pool #进程池
from multiprocessing.pool import ThreadPool #线程池
import socket

sock = socket.socket()
sock.bind(('',8085))
sock.listen(100)
def worker(con):
    while True:
        try:
           data = con.recv(1024)
           if data:
                print(data)
                con.send(data)
           else:
               con.close()
               break
        except Exception as e:
            print(e)
            con.close()
            break

if __name__ == '__main__':
    pool = ThreadPool(4)
    while True:
            con,addr = sock.accept()
            pool.apply_async(worker,args=(con,))

客户端

import socket

client = socket.socket()

client.connect(('127.0.0.1',8085))

while True:
    data = input('please write the message:')
    client.send(data.encode())
    print(client.recv(1024).decode())
    if data == 'Q' or data == 'q':
        break

client.close()

使用进程池+线程池实现并发服务器

服务端

from multiprocessing import Pool,cpu_count
from multiprocessing.pool import ThreadPool
import socket

def worker(con):
    while True:
        try:
           data = con.recv(1024)
           if data:
                print(data)
                con.send(data)
           else:
               con.close()
               break
        except Exception as e:
            print(e)
            con.close()
            break

def work_process(sock):
    thread_pool=ThreadPool(2*cpu_count()) #一般开核数两倍的线程
    while True:
        con,addr=sock.accept()
        print("已连接",con)
        thread_pool.apply_async(worker,args=(con,))
if __name__=="__main__":
    sock = socket.socket()
    sock.bind(('', 8086))
    sock.listen(100)
    n= cpu_count() #cpu的核数
    process_pool = Pool(n) #开与核数相等的进程
    for i in range(n):
      process_pool.apply_async(work_process,args=(sock,))
      process_pool.close()
      process_pool.join()

客户端同上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值