力扣LeetCode 128题:最长连续序列

该博客主要分析了如何在O(n)的时间复杂度内解决LeetCode 128题,即找出未排序整数数组中的最长连续序列。博主首先尝试用排序但发现时间复杂度不符合要求,然后转向哈希表,使用HashSet存储元素。通过查找当前元素及其加一的值是否存在,来更新最长连续序列长度。为了避免重复查找,博主提出先判断num-1是否存在,确保每个连续序列只判断一次,最终实现了O(n)的时间复杂度解决方案。
摘要由CSDN通过智能技术生成

题目:

给定一个未排序的整数数组,找出最长连续序列的长度。
要求算法的时间复杂度为 O(n)。

示例:
输入: [100, 4, 200, 1, 3, 2]
输出: 4
解释: 最长连续序列是 [1, 2, 3, 4]。它的长度为 4。

分析

要找 连续序列 的长度,从结果可以看出,主要是为了排序,排序之后,遍历结果就可以进行连续长度的更新。

但是排序的算法,即使快排的时间复杂度也有O(nlogn),不满足要求。

这种时候一般就会想到借助哈希表,也就是类似计数排序,先来试试,用数组来做哈希表,下标做nums[i]。

1. 找出最大最小值(考虑有负值),这样就确定了哈希表的size
2. 遍历数组,对应的值在哈希表里++;
3. 遍历哈希表,非 0 元素连续长度的最大值,进行更新。
class Solution {
   
    public int longestConsecutive(int[] nums) {
   
        int max=0,min=0;
        for(int num: nums){
   
            max=Math.max(max,num);
            min=Math.min(min,num);
        }
        min=-min;
        int[] bucket=new 
LeetCode力扣)上,有一个经典的算法目叫做“最长连续序列”(Longest Continuous Increasing Subsequence),通常用C++或其他编程语言进行解答。这个目的目的是找到一个给定整数数组中的最长递增子序列。递增子序列数组中的一段连续元素,它们按顺序严格增大。 这里是一个简单的C++解决方案思路: ```cpp #include <vector> using namespace std; class Solution { public: int longestContinuousIncreasingSubsequence(vector<int>& nums) { if (nums.empty()) return 0; // 避免空数组的情况 int n = nums.size(); vector<int> dp(n, 1); // dp[i] 表示以nums[i]结尾的最长递增子序列长度 int max_len = 1; // 初始化最长递增子序列长度为1 for (int i = 1; i < n; ++i) { // 遍历数组,从第二个元素开始 if (nums[i] > nums[i-1]) { // 如果当前元素比前一个大 dp[i] = dp[i-1] + 1; // 更新dp值,考虑加入当前元素后的增长长度 max_len = max(max_len, dp[i]); // 检查是否更新了最长序列长度 } } return max_len; // 返回最长连续递增子序列长度 } }; ``` 在这个代码中,我们使用了一个动态规划(Dynamic Programming)的方法,维护了一个数组`dp`来存储每个位置以该位置元素结尾的最大递增子序列长度。遍历过程中,如果遇到当前元素大于前一个元素,则说明可以形成一个新的递增子序列,所以将`dp[i]`设置为`dp[i-1]+1`,并更新全局的最长序列长度。 如果你想要深入了解这个问,可以问: 1. 这个问的时间复杂度是多少? 2. 动态规划是如何帮助解决这个问的? 3. 如何优化这个算法,使其空间复杂度更低?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值