数据结构 - 第六章 图

本文介绍了图的定义,包括简单图、完全图、有向图、无向图等类型。图的存储结构包括邻接矩阵和邻接表,适用于不同密度的图。接着,讨论了图的遍历算法,如深度优先遍历和广度优先遍历。此外,还涵盖了最小生成树、最短路径算法以及拓扑排序和关键路径的概念。
摘要由CSDN通过智能技术生成

定义

图 (Graph) 是由顶点的有穷非空集合和顶点之间边的集合组成,结点之间存在多对多的关系。通常表示为:G ( V, E )。其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。


简单图:不存在顶点到其自身的边,且同一条边不重复出现。

完全图:任意两个顶点之间都存在边。有向图中,要求两个顶点存在互相指向的边。

有向图:两顶点间的边有方向,用<>表示。

无向图:两顶点间的边无方向,用()表示。

稀疏图:有很少条边或弧的图,反之称为稠密图。

网:边或弧具有与它相关的数字的图,数字即权重。

图与子图的关系,如下图所示。

路径:构成两点间通路的顶点序列,路径的长度是路径上的边或弧的数目。

环/回路:第一个顶点到最后一个顶点相同的路径。

连通图:图中任意两个结点都是连通的。

连通分量:无向图中的极大连通子图。

强连通分量:有向图中的极大强连通子图。

极小连通子图:连通图的生成树,它含有图中全部的n个顶点,但只有足以构成一棵树的 n-1 条边。非连通图的多棵生成树构成一个生成森林。

 

存储结构

邻接矩阵存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。适用于稠密图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值