cnn pytorch 非图像数据_使用OpenMMLab代码和数据集构建您的下一个研究项目

本文介绍了OpenMMLab的多个开源CV库,如MMCV、MMClassification、MMDetection、MMSegmentation和MMPose,它们支持多种模型和数据集,可用于非图像数据的CNN研究。OpenMMLab提供了丰富的文档和数据集,如DeeperForensics、WIDER系列等,助力计算机视觉研究。
摘要由CSDN通过智能技术生成

Introduction

简单梳理下OpenMMLab的开源框架套餐。这个项目由香港中文大学MMLab实验室牵头,同时右由新加坡南洋理工、亚马逊以及南京大学协作开源。截止目前为止,OpenMMLab拥有10+种类型的开源代码库,拥有100+种算法和600+个模型可用于计算机视觉学术研究,包括但不仅限分类、检测、分割、人体姿态估计、超分等领域。此外,在OpenMMLab中,还提供了MMLab所拥有的20+个数据集。最后,OpenMMLab还为初学者提供了全面的操作文档,包括每个仓库的说明,数据集的用法以及具体的使用教程。

Project

MMCV:是一个为CV研究所提供的一些基础python库,包括通用的IO接口、图像/视频处理、图像和标注可视化、有用的工具包(时间管理、日志管理等)、具有Hook机制的PyTorch runner、不同类型的CNN架构、高质量的常规CUDA核心操作实现。

项目链接:https://github.com/open-mmlab/mmcv

文档链接:https://mmcv.readthedocs.io/en/latest/

ed8e83f3f2706b34c3d6d58131209ee7.png

MMClassification:是基于PyTorch的开源图像分类工具箱,支持多种带预训练的骨干网络:ResNet、ResNeXt、SE-ResNet、SE-ResNeXt、RegNet、ShuffleNet V1-V2、MobileNet V2-V3;同时还提供了许多有用的训练tricks大礼包,具备有效率和扩展性。

项目链接:https://github.com/open-mmlab/mmclassification

文档链接:https://mmclassification.readthedocs.io/en/latest/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值