Introduction
简单梳理下OpenMMLab的开源框架套餐。这个项目由香港中文大学MMLab实验室牵头,同时右由新加坡南洋理工、亚马逊以及南京大学协作开源。截止目前为止,OpenMMLab拥有10+种类型的开源代码库,拥有100+种算法和600+个模型可用于计算机视觉学术研究,包括但不仅限分类、检测、分割、人体姿态估计、超分等领域。此外,在OpenMMLab中,还提供了MMLab所拥有的20+个数据集。最后,OpenMMLab还为初学者提供了全面的操作文档,包括每个仓库的说明,数据集的用法以及具体的使用教程。
Project
MMCV:是一个为CV研究所提供的一些基础python库,包括通用的IO接口、图像/视频处理、图像和标注可视化、有用的工具包(时间管理、日志管理等)、具有Hook机制的PyTorch runner、不同类型的CNN架构、高质量的常规CUDA核心操作实现。
项目链接:https://github.com/open-mmlab/mmcv
文档链接:https://mmcv.readthedocs.io/en/latest/
MMClassification:是基于PyTorch的开源图像分类工具箱,支持多种带预训练的骨干网络:ResNet、ResNeXt、SE-ResNet、SE-ResNeXt、RegNet、ShuffleNet V1-V2、MobileNet V2-V3;同时还提供了许多有用的训练tricks大礼包,具备有效率和扩展性。
项目链接:https://github.com/open-mmlab/mmclassification
文档链接:https://mmclassification.readthedocs.io/en/latest/