Description
众所周知,ly和wjw是好朋友,某天特别无聊,他们想自己编一个游戏代码,无奈水平有限,只会写个random每次输出一个随机数,于是他们自己制定了一个游戏规则
游戏由多轮组成,每一轮中由计算机输出一个自然数ki,然后ly和wjw会同时喊出一个数字,谁喊出的数字更靠近这个ki就获胜,获胜的人的得分会乘上ki^2,失败者的得分乘上ki.
虽然这个游戏很无聊,但是为了打发时间,ly和wjw居然玩了一下午,但是由于记录游戏步骤的ly弄丢了他们记录T场游戏的笔记本,但是好在wjw还依稀记得每场比赛最终的结局是ly获得了ai分,wjw获得了bi分。但是他的记忆是模糊的,他希望能够验证没对ai和bi是否正确。
每场游戏一开始ly和wjw的积分都是1.
wjw和ly不想太麻烦你,他们只想知道对于每组ai和bi的结局是否是一个正确的最终得分。
Input
第一行输入一个T,表示总共进行了T组游戏(T<=500000)
接下来的T行,每行两个整数ai和bi表示wjw记得的每一场比赛两人的最终得分(1<=ai,bi<=10^9)
Output
对于每一对ai和bi,如果这对最终得分是正确的,那么输出"Ok",否则输出"Error".
Sample Input
4
16 16
2 4
1 1
18 19
Sample Output
Error
Ok
Ok
Error
因为这是中文题因此不对题意多加赘述
看到样例我们很容易能想到分解因数
a=k1^(x1)*k2^(x2)*...kn^(xn)
b=k1^(y1)*k2^(y2)*...kn^(yn)
并且保证xi+yi=3
那么a*b=(k1*k2*...kn)^3;
即ab时某个数的三次方;
考虑到对任意ki,a和b的因子都都有它,因为赢的人乘ki^2,输的的人乘ki,
也就是幂次比为1:2或2:1,不能存在0:3的情况
这时候我们可以发现,若将a进行平方操作,
那么本来a胜的回合,ki的幂次变为4,ki^4,a败的回合ki的幂次变为2,ki^2
这时候我们可以发现对应的b,若a胜,ki^1,若a败,ki^2,我们可以发现就呈倍数,可以直接判断a*a%b==0
反过来也一样,需要满足b*b%a==0
总结一下满足条件的答案a,b则需要满足
1.a*a%b==0
2.b*b%a==0
3.存在x使得a*b=x^3
但是简单的判断时间复杂度太高会超时
#include<iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
int main(){
int t;
scanf("%d",&t);
while(t--)
{
long long a,b;
scanf("%lld%lld",&a,&b);
int temp=0;
if (a*a%b==0)
temp++;
if(b*b%a==0)
temp++;
for(int i=1;i<=a&&i<=b;i++)
if(i*i*i==a*b)
{
temp++;
break;
}
判断是否为三次方数、
if(temp==3)
printf("Ok\n");
else
printf("Error\n");
}
return 0;
}
换做用二分查找成功AC
#include<iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
二分查找
int judge(long long x)
{
int l=1,r=1000000;
long long mid;
while(l<=r)
{
mid=(l+r)/2;
if(mid*mid*mid==x) return 1;
if(mid*mid*mid<x)
l=mid+1;
else
r=mid-1;
}
return 0;
}
int main(){
int t;
scanf("%d",&t);
while(t--)
{
long long a,b;
scanf("%lld%lld",&a,&b);
int temp=0;
if (a*a%b==0)
temp++;
if(b*b%a==0)
temp++;
if(judge(a*b))
temp++;
if(temp==3)
printf("Ok\n");
else
printf("Error\n");
}
return 0;
}