Description
你有一个神奇的背包,他的容积是m(0<m<=80),只有你装满他,你才能拿走他,现在给你n(1<=n<=20)个物品Xi(Xi<=m),那么一共有几种方式,可以让你拿走背包?
Input
第一行 n,m
第二行 n个数字
Output
输出方案数
Sample Input
3 40 20 20 20
Sample Output
3
菜鸡如我本来是用枚举写的,代码太长就不贴了
后来看了题解才知道有种东西叫深搜
菜鸡表示瑟瑟发抖,留下了不学无术的泪水
思路:
1.判断边界,正好装满,或者没装满超出范围,return;
2.对于每一种物品,装或不装,两个递归下去就可以了。
大佬说这个是简单的深搜题,也就是dfs,
虽然不是很清楚但是菜也有菜的做法
首先,上模板
void dfs(int step)
{
判断边界,返回
for(i=1;i<=n;i++) 尝试每一种可能
{
继续下一步dfs(step+1);
}
return;
}
AC代码
#include <bits/stdc++.h>
using namespace std;
int n, m, a[30], ans = 0;
void dfs(int ok, int k)//ok代表本层结果,k就是数组的index 下标而已。
{
if (ok == 0)//判断边间,如果ok等于0,那说明背包正好装满了,那么这是一种装法,所以ans++;
{
ans++;
return;//记得结束
}
if (ok<0 || k>n)//如果要装进去的东西太多了或者所有东西都装进去了(本题必须要装满才能拿),都不满足
return;
dfs(ok - a[k], k + 1);//放进一个a[k]的东西
dfs(ok, k + 1);//继续推进,进入下一层递归
return;
}
int main()
{
while (~scanf("%d%d", &n, &m))
{
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
ans = 0;//一开始忘了在这里初始化
dfs(m, 1);
printf("%d\n", ans);
}
return 0;}