Description
有一个由n个数字组成的序列,序列的每个数字不是1就是2。如果一个序列是第K完美序列,则这个序列满足以下两点;
1.k是n的因子。
2.这个序列中每隔k个元素都相等。
例如序列(1,2,1,2,1,2,1,2),不仅是一个第2完美序列而且又是一个第4完美序列。序列(1,1,1,1)是一个第1完美序列。
你的任务是给定一个由n个数字组成的序列,最少需要改变几个元素才能使这个序列变成一个第K完美序列。
Input
多组测试数据。
每组测试数据的第一行为两个正整数n,k(1<=k<=n<=100)。
第二行为n个由空格分隔的正整数代表这个序列。
Output
对于每组测试数据,输出最少需要改变的次数。
Sample Input
6 2 2 1 2 2 2 1 8 4 1 1 2 1 1 1 2 1 9 3 2 1 1 1 2 1 1 1 2
Sample Output
1 0 3
若序列为完美序列,则每组数据可以分为k组完全一样的数组
若不是完美序列,则将数据存在一个二维数组中,将每列数字变为相同的数字
AC代码
#include <bits/stdc++.h>
using namespace std;
int a[100][105];
int main()
{
int n,k,x,b,c;
int ans;
while(cin>>n>>k)
{
x=n/k;
for(int i=1;i<=x;i++)
for(int j=1;j<=k;j++)
cin>>a[i][j];//将一大组数分成k组
ans=0;
for(int i=1;i<=k;i++)
{
b=0;
c=0;
for(int j=1;j<=x;j++)
{
if(a[j][i]==1)//判断怎样改动最小
b++;
else
c++;
}
ans+=min(b,c);
}
cout<<ans<<endl;
}
return 0;
}