工程

Description

 

 

某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。

 

Input

 

 

本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。

 

 

 

 

Output

对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.

 

 

 

 

Sample Input

3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2

Sample Output

2 -1

题目要求是求最短路径,所以我们用佛洛依德算法,直接就可以算出来了

先用一个数阵将陈镇间的距离保存,然后最开始只允许经过一号顶点中转

接下来只允许经过1,2顶点中转,...........................允许经过1~n所有顶点中转,求任意两点的最短路径。

用一句话概括就是从i点到j点只经过前k号点的最短路程

AC代码

#include <iostream>
int N[205][205];
#define INF 0xfffffff
using namespace std;
int main()
{   
    int n,m;
    int i,j,k;
    int x,y,z;
    while(cin>>n>>m)
    {
    	for(i=0;i<n;i++)
        {
            for(j=0;j<n;j++)
            {
                if(i==j)
				 N[i][j]=0;
                else
				 N[i][j]=INF;
            }
        }
    	for(k=1;k<=m;k++)
    	{
    		cin>>x>>y>>z;
    		if(N[x][y]>z)
    		N[y][x]=N[x][y]=z;
		}
	/*	for(i=0;i<n;i++)
    	        {
    	       for(j=0;j<n;j++)
    	       {
    	       	cout<<N[i][j]<<" ";
			    }
				cout<<endl;
		        }
		        cout<<endl;*/
    	//Floyd-Warshall
...........................................................................
    	for(k=0;k<n;k++)//划重点
    	    for(i=0;i<n;i++)
    	       for(j=0;j<n;j++)
    	           if(N[i][j]>N[i][k]+N[k][j])
    	              N[i][j]=N[i][k]+N[k][j];
...............................................................................
    	       /* for(i=0;i<n;i++)
    	        {
    	       for(j=0;j<n;j++)
    	       {
    	       	cout<<N[i][j]<<" ";
			    }
				cout<<endl;
		        }*/
    	      cin>>x>>y;
			  if(N[x][y]==INF)
			  printf("-1\n");
			  else
			  printf("%d\n",N[x][y]);        
    	           
    	              
	}
	
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值