Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
题目要求是求最短路径,所以我们用佛洛依德算法,直接就可以算出来了
先用一个数阵将陈镇间的距离保存,然后最开始只允许经过一号顶点中转
接下来只允许经过1,2顶点中转,...........................允许经过1~n所有顶点中转,求任意两点的最短路径。
用一句话概括就是从i点到j点只经过前k号点的最短路程
AC代码
#include <iostream>
int N[205][205];
#define INF 0xfffffff
using namespace std;
int main()
{
int n,m;
int i,j,k;
int x,y,z;
while(cin>>n>>m)
{
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(i==j)
N[i][j]=0;
else
N[i][j]=INF;
}
}
for(k=1;k<=m;k++)
{
cin>>x>>y>>z;
if(N[x][y]>z)
N[y][x]=N[x][y]=z;
}
/* for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
cout<<N[i][j]<<" ";
}
cout<<endl;
}
cout<<endl;*/
//Floyd-Warshall
...........................................................................
for(k=0;k<n;k++)//划重点
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(N[i][j]>N[i][k]+N[k][j])
N[i][j]=N[i][k]+N[k][j];
...............................................................................
/* for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
cout<<N[i][j]<<" ";
}
cout<<endl;
}*/
cin>>x>>y;
if(N[x][y]==INF)
printf("-1\n");
else
printf("%d\n",N[x][y]);
}
return 0;
}