一、什么是执行计划
执行计划:使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MYSQL是如何处理SQL语句的,分析查询语句或是表结构的性能瓶颈
EXPLAIN语法:Explain+SQL语句
EXPLAIN能做哪些事
1.表的读取顺序
2.数据读取操作的操作类型
3.哪些索引可以使用
4.哪些索引被实际使用
5.表之间的引用
6.每张表有多少行被优化器查询
二、Explain的结构和各字段的解释
2.1id
select查询的序列号,包含一组数字,表示查询中执行select子句或操作表的顺序
id有三种情况
1.id相同,执行顺序由上至下
2.id不同,如果是子查询,id的序号会递增,id值越大优先级越高,优先被执行
3.id相同不同,同时存在,则id相同,可以认为一组,从上往下顺序执行;在所有组中,id值越大,优先级越高,越先执行
如该例,优选执行t3表,再执行dervived2,最后执行t2表
2.2select_type
类型分类:
SIMPLE:简单的select查询,查询中不包含子查询或者union
PRIMARY:查询中若包含任何复杂的子部分,最外层查询则被标记
SUBQUERY:在select或where列表中包含了子查询
DERIVEO:在from列表中包含的子查询被标记为dervived(衍生)Mysql会递归执行这些子查询,把结果放到临时表里
UNION:如果第二个select出现在union之后,则被标记为union;若union包含在from子句的子查询中,外层select被标记为:derived
UNION RESULT:从union表获取结果的select
2.3type
type显示的是访问类型,是较为重要的一个指标,结果值从最好到最坏依次是:
详细:system>const>eq_ref>ref>fulltext>ref_or_null>index_merge>unique_subquery>index_subquery>range>index>All
一般:system>const>eq_ref>ref>range>index>All
一般来说,得保证查询至少达到range级别,最好达到ref
- system:表只有一行记录(等于系统表),这是const类型的特例,平时不会出现,这个也可以忽略不计
- const:表示通过索引一次就找到了,const用于比较primary kye或者unique索引,因为只匹配一行数据,所以很快,如将主键置于where列表中,MYSQL就能将该查询转换为一个常量
- eq_ref:唯一性索引扫描,对于每个索引键,表中只有一条记录与之匹配。常见于主键或唯一索引扫描
- ref:非唯一性索引扫描,返回匹配某个单独值的所有行,本质上也是一种索引访问,它返回所有匹配某个单独值的行,然而,它可能会找到多个符合条件的行,所以它应该属于查找和扫描的混合体
- range:只检索给定范围的行,使用一个索引来选择行,key列显示使用了哪个索引,一般就是在你的where语句中出现了between、>、<、in等的查询,这种范围扫描索引扫描比全表扫描要好,因为它只需要开始于索引的某一点,而结束语另一点,不用扫描全部索引
- index:full index scan,index与All区别为index类型只遍历索引树,这通常比All快,因为索引文件通常比数据文件小(即虽然all和index都是读全表,但index是从索引中读取的,而all是从硬盘中读的)。
- All:full table scan,将遍历全表以找到匹配的行
2.4possible_keys
显示可能应用在这张表中的索引,一个或多个。查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询实际使用
2.5key
实际使用的索引。如果为NULL,则没有使用索引,查询中若使用了覆盖索引,则该索引仅出现在key列表中
2.6key_len
表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度,在不损失精确性的情况下,长度越短越好,key_len显示的值为索引字段的最大可能长度,并非实际使用长度,即key_len是跟进表定义计算而得,不是通过表内检索出的
2.7ROWS
根据表统计信息及索引选用情况,大致估算出找到所需的记录所需要读取的行数
Extra:包含不适合在其他列中显示但十分重要的额外信息,主要包括如下分类
Using filesort:说明mysql会对数据使用一个外部的索引排序,而不是按照表内的索引顺序进行读取。Mysql中无法利用索引完成的排序操作称为“文件排序”
Using temporary:使用了临时表保存中间结果,Mysql在对查询结果排序时使用临时表。常见于排序order by和分组查询group by
USING index:表示相应的select操作中使用了覆盖索引,避免访问了表的数据行,效率不错!如果同时出现using where,表明索引被用来执行索引键值的查找;如果没有同时出现using where,表明索引用来读取数据而非执行查找动作。
Using where:表明使用了where过滤
Using join buffer:使用了连接缓存
impossible where:where子句的值总是false,不能用来获取任何元组
select tables optimized away:在没有group by子句的情况下,基于索引优化MIN/MAX操作或者对于MyISAM存储引擎优化count(*)操作,不必等到执行阶段再进行计算,查询执行计划生成的阶段即完成优化
distinct:优化distinct操作,在找到第一匹配的元组后即停止找同样值的动作
三、sql简单描述
3.1sql执行顺序
开发人员编写的sql语句,与机器翻译过来的sql语句执行顺序是不一样的,机器是先查询需要用到哪些表,再去找筛选条件,再去分组过滤,再去挑选哪些字段展示,其次排序,最后分页。具体可参考如下图:
我们也可以直接看机器对sql解析的鱼骨图。
我们来看一个案例:
输出执行计划结果
我们来看一下这条sql的执行顺序:
◆第一行(执行顺序4):id列为1,表示是union里的第一个select,select_type列的primary表示该查询为外层查询,table列被标记为<derived3>,表示查询结果来自一个衍生表,其中derived3中3代表该查询衍生自第三个select查询,即id为3的select【select t.name....】
◆第二行(执行顺序2):id列为3,表示是整个查询下中第三个select的一部分,因查询包含在from中,所以为derived,【select id,name,age from teacher where name=''】
◆第三行(执行顺序3):id列为2,表示select列表中的子查询select_type为subquery,为整个查询中的第二个select【select id from class】
◆第四行(执行顺序1):id列为4(最大),select_type为union,说明第四个select是union里的第二哥select,最先执行【select name,id from student】
◆第五行(执行顺序5):代表从union的临时表中读取行的阶段,table列的<union1,4>表示用第一个和第四个select的结果进行union操作【两个结果union操作】
3.2 7种JOIN查询
四、索引优化
4.1单表索引优化
SELECT *
FROM emp
WHERE job='BOSS' AND comm>100
ORDER BY deptno
DESC LIMIT 5 ;
执行结果:
我们可以看出这条sql执行耗时是7.39秒,对于这条sql我们怎么通过索引的形式提升查询的性能呢?在创建索引之前,我们先看一下这条sql的执行计划,具体如下:
//执行计划 EXPLAIN+SQL语句
EXPLAIN SELECT * FROM emp WHERE job='BOSS' AND comm>100 ORDER BY deptno DESC LIMIT 5;
执行计划结果:
#结论:很显然type是ALL,即是最坏的情况,Extra里还出现了Using filesort,也是最坏的情况,rows是sql查询了2719223行数据,优化是必须
优化步骤:
创建索引:
create index idx_job on emp(job);
create index idx_comm on emp(comm);
create index idx_deptno on emp(deptno);
注意:因为数据量比较大,所以创建索引的时候可能会比较耗时。对于创建索引时如果是blob 和 text 类型,必须指定length。
执行结果:
可以看到type变为index,Extra中的Using filesort也消失了,rows只有13行,结果非常理想
注意:虽然我们创建了3个索引字段,但是优化器只选择一个它认为最优的索引路径查询;所以我们在执行计划中的key对应的值是idx_deptno,其他索引没有用到。
4.2多张表索引优化
SELECT d.deptno,d.dname,e.ename,e.job,e.sal
FROM emp e
LEFT JOIN dept d ON e.deptno=d.deptno
WHERE d.deptno is not NULL;
SQL查询信息
执行计划信息
我们可以看出没有添加索引两张表都是全表扫描,且耗时为6.957秒,查询效率比较慢,下面我们来建立索引,分别给dept表建立deptno字段索引,emp表建立deptno索引
CREATE INDEX idx_deptno on dept(deptno);
CREATE INDEX idx_deptno on emp(deptno);
执行sql
执行计划
建立索引之后,type从all变成ref级别,rows从2719223行变成5097行,查询时间从6.957秒变成0.03秒,优化性能提升了上千倍。
4.3防止索引失效
4.3.1初始化脚本
4.3.2.全值匹配我最爱
查询结果
执行计划
4.2.3.最佳左前缀法则
如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引中的列
4.2.4.不在索引列上做任何操作(计算、函数、(自动or手动)类型转换),会导致索引失效而转向全表扫描
4.2.5存储引擎不能使用索引中范围条件右边列
创建索引
执行计划结果:
4.2.6.尽量使用覆盖索引(只访问索引的查询(索引列和查询列一直)),减少select *
4.2.7.mysql 在使用不等于(!= 或者 <>)的时候无法使用索引会导致扫描全表
4.2.8.is null,is not null也无法使用索引
4.2.9.like以通配符开头('%abc...')mysql索引失效会变成全表扫描的操作
4.2.10.字符串不加单引号索引失效
4.2.10.少用or,用它来连接时会索引失效
4.3总结