凡是数据分析,必然离不开专题分析,而专题分析呢,一个基本的含义是指:对某一专门问题或针对某一重大经济措施所作的不定期的专项分析。因此,我们可以理解成:对业务出现的问题的进一步探索分析,既是找到问题产生的具体原因,并提出解决方案。
按照思路,我简单总结了我自己在专题分析中的分析思路:
(1) 挖掘问题本质。
(2) 构建逻辑框架,即罗列出构成问题本质的版块;
(3) 在各个版块中,挨个去分析,逐一排除,找到其中的关键指标,往下钻取指标,再反复上一步骤,直到找到关键的最底层的数据指标;
(4) 找到最根本的原因,并提出解决方案。
一、挖掘问题本质
任何问题都不能只看到表面。这种表面现象,是运营、客服、市场、客户等直接告诉你的,或者是数据指标反映出来的。而问题的本质,都能大致对应到数据的某个具体指标中。
假设你所在的公司,有线上购物的业务,据客服或运营反映,这段时间,买家在每天中午12点和下午6开始就不停地在催单。这时,站在卖家的角度,你看的是只是相关部门的反馈,各项数据指标也有一些或大或小的浮动,你此时会很迷茫。
那么我们试试换一个角度,思考一下这个业务问题的直接感受人。
经过思考,我们发现这个业务问题的直接感受人是:买家。那我们现在可以换位思考,尝试站在买家的角度思考—“为什么我会在这两个时间段催单呢?”。“对了,我催单,是因为从我下单后,过了很久都没有发货,而这家店是声明会在2个小时内发货的!还有其他原因吗?没有。毕竟我在那个时间只关注他们何时发货。”
换位思考完毕,我们发现了问题的本质,既是“买家从下单到发货的时间变得很大”,用业务术语来描述,既是“整体出单时效变大”。
如上,只是举了一个例子来说明挖掘问题本质的思路。在实际的业务中,不一定会像这个例子一样,因为我现在接触并了解的行业也不多,不能确保这个思路在所有行业中有效,但万变不离其宗,一定要找到“问题的本质”,既对应的数据指标。
二、构建逻辑框架
挖掘到问题的本质后,我们便可以罗列出对应数据指标的构成版块。
凡是数据指标,都有其计算的方法和公式,都能关联到更多版块,既更多数据指标。比如:收益=收入-支出,影响收益的直接指标就是收入、支出,若收益减少,只能是收入减少或者支出变大,而收入和支出又有自身的计算公式,顺延着依次列出。
构建逻辑框架,是为了让数据分析师理清自己的分析思路,更快速方便地找到问题原因。在此说明,每个企业都有自己数据指标定义,在构建逻辑框架时,一定要熟悉每个数据指标的定义、计算方法和公式。并不是每个企业对同一个指标的定义都是一样的,不要被臆想的定义给带偏了。
三、找到关键指标
顺着逻辑框架,分析数据指标,逐一排除。若某个指标异动较大,就需要进一步钻取它的下一级指标,如此反复,直到找到异动较大的最底层的数据指标。
在这个过程中,逻辑框架只是辅助,帮助我们找到关键的指标。因为在逻辑框架中,还隐藏了一些指标定义没有告诉我们的业务知识。
再次回到第一步我举的例子,最终了解到的问题本质是—“整体出单时效变大”。从定义中我们了解这个时效为几个阶段时效的总和,根据指标定义、计算方法和公式,我们了解到最底层的异动指标。但是,它并没有告诉我们,其实公司根据买家的购买情况,将买家做了VIP等级分类,等级越高的买家的订单会越快得到处理,而等级越低的买家,订单总是会最后才处理。同时,它也没有告诉我们,12点和18点,是公司对应部门运力最弱的时候,因为排班,导致这段时间值班的工作人员变得很少。这是影响业务的最终原因吗?不一定,需要我们验证。
我将接下来的思考,定义为:用数据还原业务场景。如大部分侦探悬疑小说一样,神探根据各种线索,快速在脑海中还原了案发过程,可以细致到其中哪些人大致做了什么事,说了什么话,当时的时间、天气等等。那我们的数据分析过程为什么就不是呢?
我们掌握的数据远比神探掌握的多得多,毕竟我们在业务过程中很多地方都做了数据埋点,将这些数据组织起来,足可以还原当时的业务场景。
具体的业务还原过程,我现在还没有完全总结到精髓,未来深入理解后,会继续讲述。但,这种思路,我认为应该是大部分合格的数据分析师都具有的。
四、找到最根本的原因,提出解决方案
在基于业务理解上,我们对各个可能的业务因素列出了逻辑框架,不断分析和排除,根据业务场景,最终确定了问题的主要原因。
还是说道之前举的例子:因为线上业务近期在做促销活动,高等级的VIP买家下单量逐步提高,低等级的买家单量也有小幅度上涨,而催单的买家主要是低等级的买家。对应部门在午休和18点后的排班并没有因促销而及时调整,导致大量的高等级买家的单量得到了及时处理,而低等级的买家的单量一直在被延后,严重超时,故出现了催单现象。
找到了原因,我们便可以提出对应的解决方案了。我认为,作为一个合格的数据分析师,就算你现在不是一个管理者,也应当具有管理者的管理思维,甚至要比你的领导更了解企业的业务情况。基于上诉标准,提出的解决方案才更有建设性。
解决方案,应该是针对各个部门提出的,尽量不要提出一个模糊的框架,比如上诉例子,你不能说“午休和18点后的人手不足,建议增加人手”等等模糊的语句,那之后可能就会有人来问你,那我要增加几个人呢?你站在管理者的角度,必然是希望数据分析师能给到你具体的建议,如哪一个部门的问题在哪里,现在要怎么做。
以上都是我近期关于“专题分析”的一些总结,我的数据分析之路还很长,言及的一些思路仅仅只是我个人的一些思考,并不代表大家一定要遵循我的方法,若你有其它思考可以和我私聊哦。