判断最小生成树是否唯一
原文链接:http://www.cnblogs.com/wkfvawl/p/9845689.html
我们知道在构造最小生成树的时候有可能会选择不同的边,这样构造的最小生成树不相同,但是最小生成树的权是唯一的!
毫无疑问,无向图中存在相同权值的边是最小生成树不唯一的必要条件(但不是充分条件)。正因为如此,如果无向图中各边的权值都不相同,那么在用Kruskal算法构造最小生成树时,选择的方案是唯一的。
这里给出判定最小生成树唯一的算法思路:
1.对图中的每一条边,扫描其他边,如果存在相同权值的边,则对此边做标记。
2.然后使用Kruskal(或者prim)算法求出最小生成树。
3.如果这时候的最小生成树没有包含未被标记的边,即可判定最小生成树唯一。如果包含了标记的边,那么依次去掉这些边,再求最小生成树,如果求得的最小生成树的权值和原来的最小生成树的权值相同,即可判断最小生成树不唯一。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=11000;
const int M=15005;
int n,m,cnt;
int parent[N];
int flag;
struct edge
{
int u;
int v;
int w;
int equals;///是否存在与该边权值相同的其他边
int used;///在第一次求得的MST中是否包含改变
int del;///边是否删除的标志
} edg[N];
int cmp(edge x,edge y)
{
return x.w<y.w;
}
void init()
{
int i;
for(i=0; i<=N; i++)
{
parent[i]=i;
}
}
int Find(int x)
{
if(parent[x] != x)
{
parent[x] = Find(parent[x]);
}
return parent[x];
}//查找并返回节点x所属集合的根节点
void Union(int x,int y)
{
x = Find(x);
y = Find(y);
if(x == y)
{
return;
}
parent[y] = x;
}//将两个不同集合的元素进行合并
int Kruskal()
{
init();
int sum=0;
int num=0;
for(int i=0; i<m; i++)
{
if(edg[i].del==1)
{
continue;
}
int u=edg[i].u;
int v=edg[i].v;
int w=edg[i].w;
if(Find(u)!=Find(v))
{
sum+=w;
if(!flag)
{
edg[i].used=1;
}
num++;
Union(u,v);
}
if(num>=n-1)
{
break;
}
}
return sum;
}
int main()
{
int t,d;
int i,j;
int counts1,counts2;
int flag2;
scanf("%d",&t);
while(t--)
{
counts1=0;
scanf("%d%d",&n,&m);
for(i=0; i<m; i++)
{
scanf("%d%d%d",&edg[i].u,&edg[i].v,&edg[i].w);
edg[i].del=0;
edg[i].used=0;
edg[i].equals=0;//一开始这个地方eq没有初始化,WA了好几发,操
}
for(i=0; i<m; i++)
{
for(j=0; j<m; j++)
{
if(i==j)
{
continue;
}
if(edg[i].w==edg[j].w)
{
edg[i].equals=1;
}
}
}
sort(edg,edg+m,cmp);
flag=0;
counts1=Kruskal();
flag=1;
flag2=0;
for(i=0; i<m; i++)
{
if(edg[i].used&&edg[i].equals)
{
edg[i].del=1;
counts2=Kruskal();//printf("%d %d\n",i,s);
if(counts2==counts1)
{
flag2=1;
printf("Not Unique!\n");
break;
}
edg[i].del=0;
}
}
if(!flag2)
{
printf("%d\n",counts1);
}
}
return 0;
}