选择排序

(一)排序过程分析

    假设现在有N个数比较大小,选择排序就是首先在0~N-1上选择一个最小的数,取最小数的位置,假设这个位置叫 min_index,然后把该位置与0位置交换,这样就排好了第一个数;第二次排序的时候,从剩下的1~N-1里选最小的数放在1位置上,以此类推,最终得到排好序的数字。

(二)时间复杂度分析

    第一次扫描的时候,扫过N个数,每个数都是O(1),一共有N组这样的常数操作,所以是O(N);第二次是扫描N-1个数,所以是O(N-1);以此类推。最后,你会发现这是一个等差数组,等差数组进行求和得到最终结果,所谓时间复杂度就是你把常数操作的数量给他写成一个表达式的话,就是不要低阶项,只要高阶项,并且忽略掉高阶项的系数。即选择排序的时间复杂度为 O(N2) O ( N 2 )
这里写图片描述

(二)Java代码(出自左神)
import java.util.Arrays;

public class SelectionSort {

public static void selectionSort(int[] arr) {
    if (arr == null || arr.length < 2) {
        return;
    }
    for (int i = 0; i < arr.length - 1; i++) {
        int minIndex = i;
        for (int j = i + 1; j < arr.length; j++) {
            minIndex = arr[j] < arr[minIndex] ? j : minIndex;
        }
        swap(arr, i, minIndex);
    }
}

public static void swap(int[] arr, int i, int j) {
    int tmp = arr[i];
    arr[i] = arr[j];
    arr[j] = tmp;
}

// for test
public static void comparator(int[] arr) {
    Arrays.sort(arr);
}

// for test
public static int[] generateRandomArray(int maxSize, int maxValue) {
    int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
    for (int i = 0; i < arr.length; i++) {
        arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
    }
    return arr;
}

// for test
public static int[] copyArray(int[] arr) {
    if (arr == null) {
        return null;
    }
    int[] res = new int[arr.length];
    for (int i = 0; i < arr.length; i++) {
        res[i] = arr[i];
    }
    return res;
}

// for test
public static boolean isEqual(int[] arr1, int[] arr2) {
    if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
        return false;
    }
    if (arr1 == null && arr2 == null) {
        return true;
    }
    if (arr1.length != arr2.length) {
        return false;
    }
    for (int i = 0; i < arr1.length; i++) {
        if (arr1[i] != arr2[i]) {
            return false;
        }
    }
    return true;
}

// for test
public static void printArray(int[] arr) {
    if (arr == null) {
        return;
    }
    for (int i = 0; i < arr.length; i++) {
        System.out.print(arr[i] + " ");
    }
    System.out.println();
}

// for test
public static void main(String[] args) {
    int testTime = 500000;
    int maxSize = 100;
    int maxValue = 100;
    boolean succeed = true;
    for (int i = 0; i < testTime; i++) {
        int[] arr1 = generateRandomArray(maxSize, maxValue);
        int[] arr2 = copyArray(arr1);
        selectionSort(arr1);
        comparator(arr2);
        if (!isEqual(arr1, arr2)) {
            succeed = false;
            printArray(arr1);
            printArray(arr2);
            break;
        }
    }
    System.out.println(succeed ? "Nice!" : "Wrong!");

    int[] arr = generateRandomArray(maxSize, maxValue);
    printArray(arr);
    selectionSort(arr);
    printArray(arr);
}

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值