举例 微积分 拉格朗日方程_薛定谔方程的拉格朗日形式

这篇博客探讨了薛定谔方程的拉格朗日密度形式,强调了其在揭示对称性和守恒量关系上的优势。内容涉及非线性薛定谔方程的推导,以及在伽利略协变性和能量-动量张量中的应用,特别是在理解超流性和量子系统中的动力学方面的重要性。
摘要由CSDN通过智能技术生成

    与所有的基本物理定律一样,薛定谔方程也存在拉格朗日形式,它的拉格朗日密度是:

9f3b1c6b96634d7b14d5eb40a6d90345.png

或者更加对称的形式:

13d41189a65effe7becf7061b5982232.png

这两种形式只差了一个时间的导数项,因此是等价的,可以证明它们都给出了薛定谔方程。对于有相互作用的系统,只需在拉矢量里加上一项即可(以接触势为例):

fa39aa30d7edeef784603cbc18ccfb47.png

简单起见已经去掉了外势场U(r)。使用上式可以轻松导出非线性薛定谔方程(比如玻色爱因斯坦凝聚里的GP方程),比平均场方法更简便些。使用拉格朗日形式最大的好处是能够更容易看清对称性和守恒量的关系,对平移不变的系统(没有外势场),容易得到守恒的能量-动量张量:

41a7cf3b4a9ca3434e2d67ec5cef4f2f.png

上式的导出使用了对称形式的拉格朗日量。

d87fee0fa3cfd0cbf648749f7295a312.png

d00bcbc8068c769c603e79d0f73dcebf.png

流密度乘以质量等于动量密度这一点是非相对论理论特有的,这一点在朗道费米液体理论里有重要应用,利用它可以导出准粒子有效质量和相互作用之间的关系。在相对论里动量密度应等于能流密度,这样能动张量就对称了。从对称性的角度,非相对论理论是伽利略协变的,因此也可以说这是伽利略不变性的结果。在伽利略变换 r'=r-vt, t'=t 下,波函数有如下变换:

e582e5878dc65e7106057a0fa64e576e.png

相应的拉格朗日量的变换为

5123511de6972acd07662fe34ab1e99d.png

L'与L只差了一个导数项,是等价的,这便是薛定谔方程的伽利略协变性。

而总能量有如下变换关系:

6a9f7974e571d608feb7e6099145ee7f.png

对x'做积分是在t'=常数的等时面上,此时伽利略变化就是平移变换,因此积分体元不变。最后得到的关系和经典力学中能量的变换关系一致,利用这个式子可以给出一个伽利略不变系统在不同参照系中的激发谱关系,这对于理解超流性是至关重要的。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值