- 博客(1)
- 资源 (1)
- 收藏
- 关注
原创 一道高考数学题引发的关于柯西不等式的解析几何证明
条件极值的实质是已知条件给要求解的函数值限定了一个不规则的定义域,而这个问题中的定义域恰好是方程组的解的空间,这个解空间实质上是一个三维空间中的圆(假设解不唯一)而所求函数实质是一簇平行的空间平面在各坐标轴上的截距与其对应平面参数的乘积。那么他们必定是平面与球面的交点,而平面与球面有交集的必要条件是平面到球心的距离必然小于或者等于球的半径,等于的时候刚好相切。决定的定义域实质上一条直线,这条直线到原点的距离即是该问题的极小值,也是最小值。的解的空间越小,反之越大(但是不超过圆的直径)。
2023-05-26 11:15:12 636 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人