计算机科学数理逻辑考试,计算机科学中使用的数理逻辑期末考试题2006到2014.pdf...

这是一份关于2006年和2007年秋季研究生课程《计算机科学中使用的数理逻辑》的试卷,涉及命题逻辑和一阶谓词逻辑的公式结构、量词扩展、逻辑翻译及形式推演等内容。题目包括构造语法树、证明逻辑不等价、定理证明以及论域的可满足性问题。
摘要由CSDN通过智能技术生成

2006 年 秋 季

研究生课程《计算机科学中使用的数理逻辑》试卷

任课教师 刘西洋

考试时间: 1 月24 日上午8:30 -10:30

地点:西406 、407 、408 、409 、410 、411

(自然语言到谓词逻辑的翻译10 分)

1、(逻辑公式的结构 20 分)

(1)给出命题逻辑公式 ( ( ( p ) ↔ (q r)) → (r p) ) 的语法树(10 分)

(2 )给出一阶谓词逻辑公式x ( F(b) → y(z G(y, z) H(u, x, y) ) ) 的语法树

(10 分)

2 (量词20 分)

基于全称量词、存在量词 以及 等词=或,定义以下扩展的量词:

(1)存在至少2 个 (8 分)

(2 )存在至多2 个 (7 分)

(3 )存在恰好3 个 (5 分)

3 (有限论域上一阶谓词逻辑到命题逻辑的翻译20 分)

4

5 (《面向计算机科学的数理逻辑》引理4.4.1 结论 (i) 20 分)

6 (OBDD OBDD 论文 10 分)

  → ↔   

1

2007 年 秋 季

研究生课程《计算机科学中使用的数理逻辑》试卷

任课教师:刘西洋 考试时间:2 小时 地点:西大楼

班级: 学号: 姓名:

1、逻辑公式的结构(20 分)

(1)给出命题逻辑公式 ( ( (¬p ) ↔ (q ⋁ r)) → (r ⋀ p) ) 的语法树(10 分)

(2 )给出一阶谓词逻辑公式∀x ( F(b) → ∃y(∀z G(y, z) ⋁ H(u, x, y) ) ) 的语法树(10

分)

2 、证明(20 分)

(1)(A→B )⋁ (A→C )⊭A→(B⋀C) (10 分)

(2 )A→(B⋁C) ⊭ (A→B )⋀ (A→C ) (10 分)

3、根据命题逻辑的形式推演证明下述定理(20 分)

(1)¬¬A ⊢A (10 分)

(2 )A ⊢¬¬A (10 分)

4 、由(Ref ),(+ ),(→ + )和下面的:

如果∑ ⊢¬¬A ,则∑ ⊢A.

证明(¬ − ). (10 分)

其中:(Ref ) A ⊢A

(+ ) 如果∑ ⊢A ,则∑ ,∑’ ⊢A.

(→ + )如果∑, A ⊢B,则∑ ⊢A→B.

5、语句集

{ ∀x ∃yF(x,y), ∀x¬F(x,x),

∀x∀y∀z[F(x,y) ⋀ F(y,z) → F(x,z)] }

在无限论域中是可满足的,但在有限论域中是不可满足的。(10 分)

p

6、设A ∈Form (ℒ )含不同的原子公式p ,…,p , v 是真假赋值。对于i=1,…,n,

1 n

 v

p 如果p 1

 i i

令 Ai 

p 否则

 i

证明:

v

(1)A =1⇒A ,…,A ⊢A

1 n

v

(2 )A =0⇒A ,…,A ⊢¬A

1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值