2006 年 秋 季
研究生课程《计算机科学中使用的数理逻辑》试卷
任课教师 刘西洋
考试时间: 1 月24 日上午8:30 -10:30
地点:西406 、407 、408 、409 、410 、411
(自然语言到谓词逻辑的翻译10 分)
1、(逻辑公式的结构 20 分)
(1)给出命题逻辑公式 ( ( ( p ) ↔ (q r)) → (r p) ) 的语法树(10 分)
(2 )给出一阶谓词逻辑公式x ( F(b) → y(z G(y, z) H(u, x, y) ) ) 的语法树
(10 分)
2 (量词20 分)
基于全称量词、存在量词 以及 等词=或,定义以下扩展的量词:
(1)存在至少2 个 (8 分)
(2 )存在至多2 个 (7 分)
(3 )存在恰好3 个 (5 分)
3 (有限论域上一阶谓词逻辑到命题逻辑的翻译20 分)
4
5 (《面向计算机科学的数理逻辑》引理4.4.1 结论 (i) 20 分)
6 (OBDD OBDD 论文 10 分)
→ ↔
1
2007 年 秋 季
研究生课程《计算机科学中使用的数理逻辑》试卷
任课教师:刘西洋 考试时间:2 小时 地点:西大楼
班级: 学号: 姓名:
1、逻辑公式的结构(20 分)
(1)给出命题逻辑公式 ( ( (¬p ) ↔ (q ⋁ r)) → (r ⋀ p) ) 的语法树(10 分)
(2 )给出一阶谓词逻辑公式∀x ( F(b) → ∃y(∀z G(y, z) ⋁ H(u, x, y) ) ) 的语法树(10
分)
2 、证明(20 分)
(1)(A→B )⋁ (A→C )⊭A→(B⋀C) (10 分)
(2 )A→(B⋁C) ⊭ (A→B )⋀ (A→C ) (10 分)
3、根据命题逻辑的形式推演证明下述定理(20 分)
(1)¬¬A ⊢A (10 分)
(2 )A ⊢¬¬A (10 分)
4 、由(Ref ),(+ ),(→ + )和下面的:
如果∑ ⊢¬¬A ,则∑ ⊢A.
证明(¬ − ). (10 分)
其中:(Ref ) A ⊢A
(+ ) 如果∑ ⊢A ,则∑ ,∑’ ⊢A.
(→ + )如果∑, A ⊢B,则∑ ⊢A→B.
5、语句集
{ ∀x ∃yF(x,y), ∀x¬F(x,x),
∀x∀y∀z[F(x,y) ⋀ F(y,z) → F(x,z)] }
在无限论域中是可满足的,但在有限论域中是不可满足的。(10 分)
p
6、设A ∈Form (ℒ )含不同的原子公式p ,…,p , v 是真假赋值。对于i=1,…,n,
1 n
v
p 如果p 1
i i
令 Ai
p 否则
i
证明:
v
(1)A =1⇒A ,…,A ⊢A
1 n
v
(2 )A =0⇒A ,…,A ⊢¬A
1